摘要:
Particle detection systems without knowledge of a location and velocity of a particle passing through a volume of space, are less efficient than if knowledge of the particle location is known. An embodiment of a particle position detection system capable of determining an exact location of a particle in a fluid stream is discussed. The detection system may employ a patterned illuminating beam, such that once a particle passes through the various portions of the patterned illuminating beam, a light scattering is produced. The light scattering defines a temporal profile that contains measurement information indicative of an exact particle location. However, knowledge of the exact particle location has several advantages. These advantages include correction of systematic particle measurement errors due to variability of the particle position within the sample volume, targeting of particles based on position, capture of particles based on position, reduced system energy consumption and reduced system complexity.
摘要:
Physical property determination of a particle or classification of the particle as a function of the physical property by evaluating scattered light profile from a single particle is disclosed. The particle may include chemical structures that vibrate as a function of a physical property of the particle. The physical property may include an absorptive property of the particle or a chemical composition. From a detected scattered light spectrum, at least two anomalous dispersive regions may be identified. The physical property of the particle may be determined as a function of the at least two regions. A system employing the physical property determination can achieve sensitivities useful for low particle density applications such as detection for biological and chemical agents.
摘要:
Physical property determination of a particle or classification of the particle as a function of the physical property by evaluating scattered light profile from a single particle is disclosed. The particle may include chemical structures that vibrate as a function of a physical property of the particle. The physical property may include an absorptive property of the particle or a chemical composition. From a detected scattered light spectrum, at least two anomalous dispersive regions may be identified. The physical property of the particle may be determined as a function of the at least two regions. A system employing the physical property determination can achieve sensitivities useful for low particle density applications such as detection for biological and chemical agents.
摘要:
Particle detection systems configured to identify a particle in a bulk sample volume are less efficient than those configured to measure a single particle. A particle detection system according to an inventive embodiment can identify a particle in a fluid stream. The detection system may employ one or more heating stations. Each heating station may be set to a distinct temperature. The heating stations may include a light source and a light detector, such that once a particle traverses a beam provided by the light source, the light detector may measure resultant optical scattering. Based on the optical scattering with respect to temperature or temperature variation, an identification of the single particle may be obtained, thereby eliminating measurement inaccuracies associated with bulk sample volumes. The particle detection system may detect organic particles among inorganic particles in various fluid flow environments, such as for safety or quality purposes.
摘要:
Particle detection systems configured to identify a particle included in a bulk sample volume are less efficient than if measurements are to be taken of a single particle. An embodiment of a particle detection system according to an embodiment of the present invention capable of determining an identification of a particle in a fluid stream is presented. The detection system may employ one or any number of heating stations. Each heating station may be set to a distinct temperature. The heating stations may include a light source and a light detector, such that once a particle traverses a beam provided by the light source, the light detector may measure resultant optical scattering. Based on the optical scattering with respect to temperature or temperature variation, an identification of the single particle may be obtained, thereby eliminating measurement inaccuracies associated with bulk sample volumes. The particle detection system may be applied to detection of organic particles among inorganic particles in various fluid flow environments, such as for safety or quality purposes.