摘要:
Systems and methods for Magnetic Resonance Angiography (MRI) are provided. One method includes obtaining Magnetic Resonance (MR) velocity data and determining a distance map for one or more vessels to define a distance path. The method also includes calculating, using the MR velocity data, at a plurality of time intervals and for a plurality of pixels (i) a distance traveled during a current time interval as a current distance traveled, wherein a total distance traveled is incremented by the current distance traveled and (ii) a bolus signal using a bolus signal profile, the distance path and total distance traveled, wherein a current time interval is incremented by a defined time step.
摘要:
Systems and methods for Magnetic Resonance Angiography (MRI) are provided. One method includes obtaining Magnetic Resonance (MR) velocity data and determining a distance map for one or more vessels to define a distance path. The method also includes calculating, using the MR velocity data, at a plurality of time intervals and for a plurality of pixels (i) a distance traveled during a current time interval as a current distance traveled, wherein a total distance traveled is incremented by the current distance traveled and (ii) a bolus signal using a bolus signal profile, the distance path and total distance traveled, wherein a current time interval is incremented by a defined time step.
摘要:
A method is provided for acquiring MR image data pertaining to a coronary artery which is in motion between end-diastolic and end-systolic maximum excursion positions, respectively, during a cardiac cycle. The method comprises the step of tracking the location of the artery during the cardiac cycle as the artery moves between the positions of maximum excursion. The method further comprises acquiring MR data at a number of locations during the cardiac cycle in a region lying between the maximum excursion positions, each having the excitation or acquisition scan locations adjusted during the MR scan so as to substantially coincide with the location of said artery at the time of data acquisition.
摘要:
A computer implemented method of mapping of multiple regional center point trajectory movements of cavity walls is provided in which images are acquired and a region-of-interest is identified in each of the images. The region-of-interest is divided into a plurality of distinct regions and a regional center point for each of the regions is located in the images. For each regional center point, a center point trajectory is determined based on variances in position of the center points from each other in the images. The center point trajectory of each regional center point is decomposed into radial and circumferential components so as to isolate radial component of the center point trajectory for each regional center point in each of the images and radial motion versus time curves are displayed for each regional center point based on the determined radial component for each regional center point in each of the images.
摘要:
A system and method for MR imaging includes a computer programmed to determine first and second view-ordering sequences. The first and second view-ordering sequences comprise values corresponding to respective views of first and second k-space data sets, respectively, wherein the values corresponding to a central view of each the first and second k-space data sets are positioned such that acquisition of k-space data in each central view is acquired from a first and second anatomical region, respectively, as a contrast agent passes therethrough. The positions of the values corresponding to the central views of the first and second k-space data sets within the respective sequences are different. The computer is further programmed to acquire MR data according to the first and second view-ordering sequences over a series of cardiac cycles to fill data in the first and second k-space data sets, respectively.
摘要:
The present invention includes a method and apparatus for high sensitivity whole body scanning using MR imaging. The invention includes acquiring MR data as the patient moves through the iso-center of the magnet while providing interactive control for the operator to change scan parameters and table motion and direction. The technique allows efficient whole body scanning for fast screening of abnormalities while allowing operator control during the screening process to interrupt table motion and redirect the speed and direction of the table while also allowing control over the acquisition plane, number of sections imaged, inter-section spacing, and the scan location.
摘要:
A method of peripheral MR angiography is provided for imaging an artery or other vessel, wherein the vessel is of such length that MR data must be acquired at each of a plurality of scan stations spaced along the vessel. In accordance with the method, a contrast agent is intravenously injected, in order to provide a bolus which successively flows to each of the scan stations. After acquiring an initial subset of the MR data associated with a given scan station, the bolus is tracked to determine whether it has arrived at the next-following scan station. If so, at least some of the MR data associated with the next scan station are then acquired. However, if it is found that the bolus has not yet arrived at the next scan station, acquisition of further data at the given scan station is continued.
摘要:
A computer implemented method of mapping of multiple regional center point trajectory movements of cavity walls is provided in which images are acquired and a region-of-interest is identified in each of the images. The region-of-interest is divided into a plurality of distinct regions and a regional center point for each of the regions is located in the images. For each regional center point, a center point trajectory is determined based on variances in position of the center points from each other in the images. The center point trajectory of each regional center point is decomposed into radial and circumferential components so as to isolate radial component of the center point trajectory for each regional center point in each of the images and radial motion versus time curves are displayed for each regional center point based on the determined radial component for each regional center point in each of the images.
摘要:
A system and method for MR imaging includes a computer programmed to determine first and second view-ordering sequences. The first and second view-ordering sequences comprise values corresponding to respective views of first and second k-space data sets, respectively, wherein the values corresponding to a central view of each the first and second k-space data sets are positioned such that acquisition of k-space data in each central view is acquired from a first and second anatomical region, respectively, as a contrast agent passes therethrough. The positions of the values corresponding to the central views of the first and second k-space data sets within the respective sequences are different. The computer is further programmed to acquire MR data according to the first and second view-ordering sequences over a series of cardiac cycles to fill data in the first and second k-space data sets, respectively.
摘要:
A system and method for optimally imaging the peripheral vasculature is disclosed which includes defining a given number of scan stations along a patient's peripheral vasculature and initially injecting a relatively small amount of contrast agent into the patient to pass a test bolus through the patient's peripheral vasculature, and thereafter tracking the test bolus through the patient and adjusting the patient on a moveable table within the MR imaging device from one scan station to a next station to determine a maximum travel time that the test bolus takes to travel through each of the given number of scan stations. Additional contrast agent is then injected into the patient to pass an exam bolus through the patient's peripheral vasculature, and using the test bolus travel time, MR data can be acquired from each scan station while it is known that the exam bolus is present in that station to optimize image resolution. Initially, central k-space data is acquired for each scan station, and if time permits, the higher spatial frequency k-space data can be acquired. Otherwise, once the central k-space data is acquired for each station, the patient table is adjusted to the scan stations that require additional data acquisition. Similarly, if there is time remaining after all MR data is acquired for a particular scan station, the patient table can be moved to a previous scan station to acquire additional data in that station before moving to a subsequent scan station to acquire the central k-space data when the exam bolus arrives in that particular scan station.