摘要:
Solutions for fabricating a semiconductor structure. One embodiment includes a method for fabricating a semiconductor structure, the method including: forming a first dielectric structure on a substrate, the first dielectric structure including silicon nitride (Si3N4); forming a second dielectric structure in proximity to the first dielectric structure; and growing a non-epitaxial thin film from a surface of the first dielectric structure; wherein the growing includes using a combination of precursor, carrier and etchant with a ratio among the precursor, carrier, and etchant being adjusted for selective growth of the thin film on the surface, and wherein the thin film includes one selected from a group consisting of: a monocrystalline material, an amorphous material, a polycrystalline material and a combination thereof.
摘要翻译:制造半导体结构的解决方案。 一个实施例包括一种用于制造半导体结构的方法,所述方法包括:在衬底上形成第一电介质结构,所述第一电介质结构包括氮化硅(Si 3 N 4); 在所述第一电介质结构附近形成第二电介质结构; 以及从所述第一电介质结构的表面生长非外延薄膜; 其中所述生长包括使用前体,载体和蚀刻剂的组合,前体,载体和蚀刻剂之间的比例被调节用于表面上的薄膜的选择性生长,并且其中所述薄膜包括选自以下的一种: :单晶材料,非晶材料,多晶材料及其组合。
摘要:
Methods of fabricating a semiconductor structure with a non-epitaxial thin film disposed on a surface of a substrate of the semiconductor structure; and semiconductor structures formed thereof are disclosed. The methods provide selective non-epitaxial growth (SNEG) or deposition of amorphous and/or polycrystalline materials to form a thin film on the surface thereof. The surface may be a non-crystalline dielectric material or a crystalline material. The SNEG on non-crystalline dielectric further provides selective growth of amorphous/polycrystalline materials on nitride over oxide through careful selection of precursors-carrier-etchant ratio. The non-epitaxial thin film forms resultant and/or intermediate semiconductor structures that may be incorporated into any front-end-of-the-line (FEOL) fabrication process. Such resultant/intermediate structures may be used, for example, but are not limited to: source-drain fabrication; hardmask strengthening; spacer widening; high-aspect-ratio (HAR) vias filling; micro-electro-mechanical-systems (MEMS) fabrication; FEOL resistor fabrication; lining of shallow trench isolations (STI) and deep trenches; critical dimension (CD) tailoring and claddings.
摘要:
Methods of fabricating a semiconductor structure with a non-epitaxial thin film disposed on a surface of a substrate of the semiconductor structure; and semiconductor structures formed thereof are disclosed. The methods provide selective non-epitaxial growth (SNEG) or deposition of amorphous and/or polycrystalline materials to form a thin film on the surface thereof. The surface may be a non-crystalline dielectric material or a crystalline material. The SNEG on non-crystalline dielectric further provides selective growth of amorphous/polycrystalline materials on nitride over oxide through careful selection of precursors-carrier-etchant ratio. The non-epitaxial thin film forms resultant and/or intermediate semiconductor structures that may be incorporated into any front-end-of-the-line (FEOL) fabrication process. Such resultant/intermediate structures may be used, for example, but are not limited to: source-drain fabrication; hardmask strengthening; spacer widening; high-aspect-ratio (HAR) vias filling; micro-electro-mechanical-systems (MEMS) fabrication; FEOL resistor fabrication; lining of shallow trench isolations (STI) and deep trenches; critical dimension (CD) tailoring and claddings.
摘要:
Methods of fabricating a semiconductor structure with a non- epitaxial thin film disposed on a surface of a substrate of the semiconductor structure are disclosed. The methods provide selective non-epitaxial growth (SNEG) or deposition of amorphous and/or polycrystalline materials to form a thin film on the surface thereof. The surface may be a non-crystalline dielectric material or a crystalline material. The SNEG on non-crystalline dielectric further provides selective growth of amorphous/polycrystalline materials on nitride over oxide through careful selection of precursors-carrier-etchant ratio. The non-epitaxial thin film forms resultant and/or intermediate semiconductor structures that may be incorporated into any front-end-of-the-line (FEOL) fabrication process. Such resultant/intermediate structures may be used, for example, but are not limited to: source-drain fabrication; hardmask strengthening; spacer widening; high-aspect-ratio (HAR) vias filling; micro-electro-mechanical-systems (MEMS) fabrication; FEOL resistor fabrication; lining of shallow trench isolations (STI) and deep trenches; critical dimension (CD) tailoring and claddings.
摘要:
Various techniques for changing the workfunction of the substrate by using a SiGe channel which, in turn, changes the bandgap favorably for a p-type metal oxide semiconductor field effect transistors (pMOSFETs) are disclosed. In the various techniques, a SiGe film that includes a low doped SiGe region above a more highly doped SiGe region to allow the appropriate threshold voltage (Vt) for pMOSFET devices while preventing pitting, roughness and thinning of the SiGe film during subsequent cleans and processing is provided.
摘要:
Various techniques for changing the workfunction of the substrate by using a SiGe channel which, in turn, changes the bandgap favorably for a p-type metal oxide semiconductor field effect transistors (pMOSFETs) are disclosed. In the various techniques, a SiGe film that includes a low doped SiGe region above a more highly doped SiGe region to allow the appropriate threshold voltage (Vt) for pMOSFET devices while preventing pitting, roughness and thinning of the SiGe film during subsequent cleans and processing is provided.
摘要:
An embedded silicon carbon (Si:C) having a substitutional carbon content in excess of one percent in order to effectively increase electron mobility by application of tension to a channel region of an NFET is achieved by overfilling a gap or trench formed by transistor gate structures with Si:C and polishing an etching the Si:C to or below a surface of a raised gate structure in a super-Damascene process, leaving Si:C only in selected regions above the transistor source and drain, even though processes capable of depositing Si:C with sufficiently high substitutional carbon content are inherently non-selective.
摘要:
Various techniques for changing the workfunction of the substrate by using a SiGe channel which, in turn, changes the bandgap favorably for a p-type metal oxide semiconductor field effect transistors (pMOSFETs) are disclosed. In the various techniques, a SiGe film that includes a low doped SiGe region above a more highly doped SiGe region to allow the appropriate threshold voltage (Vt) for pMOSFET devices while preventing pitting, roughness and thinning of the SiGe film during subsequent cleans and processing is provided.
摘要:
An embedded silicon carbon (Si:C) having a substitutional carbon content in excess of one percent in order to effectively increase electron mobility by application of tension to a channel region of an NFET is achieved by overfilling a gap or trench formed by transistor gate structures with Si:C and polishing an etching the Si:C to or below a surface of a raised gate structure in a super-Damascene process, leaving Si:C only in selected regions above the transistor source and drain, even though processes capable of depositing Si:C with sufficiently high substitutional carbon content are inherently non-selective.
摘要:
Various techniques for changing the workfunction of the substrate by using a SiGe channel which, in turn, changes the bandgap favorably for a p-type metal oxide semiconductor field effect transistors (pMOSFETs) are disclosed. In the various techniques, a SiGe film that includes a low doped SiGe region above a more highly doped SiGe region to allow the appropriate threshold voltage (Vt) for pMOSFET devices while preventing pitting, roughness and thinning of the SiGe film during subsequent cleans and processing is provided.