摘要:
A graphics processing unit implemented method for fiber tract mapping from diffusion tensor magnetic resonance imaging data includes providing a diffusion tensor magnetic resonance brain image volume, initializing a set of fiber positions in a 3D set of points, fiber displacements, and a posterior distribution for an updated fiber displacement in terms of the initial displacements and diffusion tensors, randomly sampling a set of updated fiber displacements from said posterior distribution, computing a new set of fiber positions from said initial fiber positions and said updated fiber displacements, wherein a fiber path comprises a set of fiber points connected by successive fiber displacements, accumulating connectivity values in each point of said 3D set of points by additive alpha-blending a scaled value if a fiber path has passed through a point and adding zero if not, and rendering said connectivity values.
摘要:
A graphics processing unit implemented method for fiber tract mapping from diffusion tensor magnetic resonance imaging data includes providing a diffusion tensor magnetic resonance brain image volume, initializing a set of fiber positions in a 3D set of points, fiber displacements, and a posterior distribution for an updated fiber displacement in terms of the initial displacements and diffusion tensors, randomly sampling a set of updated fiber displacements from said posterior distribution, computing a new set of fiber positions from said initial fiber positions and said updated fiber displacements, wherein a fiber path comprises a set of fiber points connected by successive fiber displacements, accumulating connectivity values in each point of said 3D set of points by additive alpha-blending a scaled value if a fiber path has passed through a point and adding zero if not, and rendering said connectivity values.
摘要:
A method for reconstructing magnetic resonance imaging data includes acquiring a measurement dataset using a magnetic resonance imaging device and determining an estimated image dataset based on the measurement dataset. An iterative reconstruction process is performed to refine the estimated image dataset. Each iteration of the iterative reconstruction process comprises: updating the measurement dataset and a sparse coefficient dataset based on the estimated image dataset and a plurality of belief propagation terms, incorporating a noise prior dataset into the measurement dataset, incorporating a sparsity prior dataset into the sparse coefficient dataset, updating the plurality of belief propagation terms based on the measurement dataset and the sparsity prior dataset, and updating the estimated image dataset based on the plurality of belief propagation terms. A reconstructed image and confidence map are generated using the estimated image dataset.
摘要:
A computer-implemented method for calculating a multi-dimensional wavelet transform in an image processing system comprising a plurality of computation units includes receiving multi-dimensional image data. An overlap value corresponding to a number of non-zero filter coefficients associated with the multi-dimensional wavelet transform is identified. Then the multi-dimensional image data is divided into a plurality of multi-dimensional arrays, wherein the multi-dimensional arrays overlap in each dimension by a number of pixels equal to the overlap value. A multi-dimensional wavelet transform is calculated for each multi-dimensional array, in parallel, across the plurality of computation units.
摘要:
A computer-implemented method for reconstruction of a magnetic resonance image includes acquiring a first incomplete k-space data set comprising a plurality of first k-space lines spaced according to an acceleration factor and one or more calibration lines. A parallel imaging reconstruction technique is applied to the first incomplete k-space data to determine a plurality of second k-space lines not included in the first incomplete k-space data set, thereby yielding a second incomplete k-space data set. Then, the parallel imaging reconstruction technique is applied to the second incomplete k-space data to determine a plurality of third k-space lines not included in the second incomplete k-space data, thereby yielding a complete k-space data set.
摘要:
Artifact quantification is provided in volume rendering. Since the visual conspicuity of rendering artifacts strongly influences subjective assessments of image quality, quantitative metrics that accurately correlate with human visual perception may provide consistent values over a range of imaging conditions.
摘要:
A reconstructed image is rendered from a set of MRI data by first estimating an image with an area which does not contain artifacts or has an artifact with a relative small magnitude. Corresponding data elements in the estimated image and a trial image are processed, for instance by multiplication, to generate an intermediate data set. The intermediate data set is transformed and minimized iteratively to generate a reconstructed image that is free or substantially free of artifacts. In one embodiment a Karhunen-Loeve Transform (KLT) is used. A sparsifying transformation may be applied to generate the reconstructed image. The sparsifying transformation may be also not be applied.
摘要:
A method for reconstructing magnetic resonance imaging data includes acquiring a measurement dataset using a magnetic resonance imaging device and determining an estimated image dataset based on the measurement dataset. An iterative reconstruction process is performed to refine the estimated image dataset. Each iteration of the iterative reconstruction process comprises: updating the measurement dataset and a sparse coefficient dataset based on the estimated image dataset and a plurality of belief propagation terms, incorporating a noise prior dataset into the measurement dataset, incorporating a sparsity prior dataset into the sparse coefficient dataset, updating the plurality of belief propagation terms based on the measurement dataset and the sparsity prior dataset, and updating the estimated image dataset based on the plurality of belief propagation terms. A reconstructed image and confidence map are generated using the estimated image dataset.
摘要:
A method of image reconstruction for a magnetic resonance imaging (MRI) system includes obtaining k-space scan data captured by the MRI system, the k-space scan data being representative of an undersampled region over time, iteratively reconstructing preliminary dynamic images for the undersampled region from the k-space scan data via optimization of a first instance of a minimization problem, the minimization problem including a regularization term weighted by a weighting parameter array, generating a motion determination indicative of an extent to which each location of the undersampled region exhibits motion over time based on the preliminary dynamic images, and iteratively reconstructing motion-compensated dynamic images for the region from the k-space scan data via optimization of a second instance of the minimization problem, the second instance having the weighting parameter array altered as a function of the motion determination.
摘要:
A method for image reconstruction includes receiving under-sampled k-space data, determining a data fidelity term of a first image of the under-sampled k-space data in view of a second image of the under-sampled k-space data, wherein a time component separated the first image and the second image, determining a spatial penalization on redundant Haar wavelet coefficients of the first image in view of the second image, and optimizing the first image according the data fidelity term and the spatial penalization, wherein the spatial penalization selectively penalizes temporal coefficients and an optimized image of the first image is output.