Abstract:
A method for processing light energy is provided that includes receiving a plurality of photons reflected by an object and generating sensor data that is based a portion of the plurality of photons received. The sensor data is processed in order to generate processed sensor data. A segment of the processed sensor data that directly corresponds to the portion of the plurality of photons is displayed such that the segment may be viewed.
Abstract:
An image intensification camera system (C) for gathering image data includes an image intensifier (310) for amplifying received light (312). A relay optic assembly (316) is coupled between the image intensifier (310) and a digital image sensor (318), such as a CMOS or CCD device. Digital logic (322) is used to process or output an image or related data (334).
Abstract:
Processing image information includes receiving light having image information. A first optical transform is performed on the light to yield a first optically transformed light, and a second optical transform is performed on the light to yield a second optically transformed light. A first metric is generated in accordance with the first optically transformed light, and a second metric is generated in accordance with the second optically transformed light. The first metric and the second metric are processed to yield a processed metric. An inverse optical transform is performed on the processed metric to process the image information of the light.
Abstract:
An InGaAs Image Intensifier (“I2”) Camera (C) detects and forms an image (310) to be viewed. An InGaAs photocathode Image Intensifier (312) is used to pass an amplified signal (316) from a screen (320). The InGaAs image intensification tube (312) is optically coupled (328) to an imaging device (322) for passing output light. The output light (316) from the InGaAs tube (312) is transformed by an electronic circuit (322) producing a desired signal output (324). The signal output (324) from the electronic circuit (322) may be further enhanced into an enhanced signal output (310). The enhanced signal output may be formatted into a form for viewing or may be saved.
Abstract:
A system and method for gathering image data are disclosed. A first sensor (120) receives light directly from an aperture (114) and generates a first data set in response to the received light. A first reflective surface (130) receives light from the aperture (114) and reflects the received light. A second reflective surface (132) receives light reflected from the first reflective surface (130) and reflects the received light. A second sensor (134) receives light reflected from the second reflective surface (132) and generates a second data set in response to the received light. The second sensor (134) is substantially coaxial with the first sensor (120).
Abstract:
A method and system for fusing image data includes an electronic circuit (L) for synchronizing image frames. An adaptive lookup table unit (302a, 302b) receives the image frame data sets and applies correction factors to individual pixels. The size of an image is then scaled or otherwise manipulated as desired by data formatting processors (312a and 312b). Multiple images communicated within parallel circuit branches (P1 and P2) are aligned and registered together with sub-pixel resolution.
Abstract:
A sensor unit (F) has at least a first and second sensor (10, 12) arranged along a sensor axis (14). A head adapter (16) provides support to mount at least one selected device about a user's cranium (18). A securing module (20) is attached to the sensor unit for mounting the sensor unit (F) to the head adapter (16). The sensor unit (F) is to be mounted above an ocular axis (22) formed between a pair of eyes (24) of the user (U) when the sensor unit (F) is attached to the head adapter element (16). When the sensor unit (F) is secured to the user (U) with the head adapter element (16), the sensor axis (14) is essentially perpendicular to the user's ocular axis (22).
Abstract:
A technique for generating an image having multiple hues includes filtering first photons at a first wavelength range using a first input filter section of an input filter, and filtering second photons at a second wavelength range using a second input filter section of the input filter. The first photons are directed towards a tube pixel set of a sensor, and the second photons are directed towards the tube pixel set. The first photons and the second photons are detected at the sensor. The first photons are received using a first output filter section of an output filter, and the second photons are received using a second output filter section of the output filter. An image is generated from the first photons and the second photons.
Abstract:
A technique for generating an image having multiple hues includes filtering first photons at a first wavelength range using a first input filter section of an input filter, and filtering second photons at a second wavelength range using a second input filter section of the input filter. The first photons are directed towards a tube pixel set of a sensor, and the second photons are directed towards the tube pixel set. The first photons and the second photons are detected at the sensor. The first photons are received using a first output filter section of an output filter, and the second photons are received using a second output filter section of the output filter. An image is generated from the first photons and the second photons.
Abstract:
A system (S) for mounting and aligning a detector (D) about an observation instrument (10) includes a first detector (12) movably coupled to the observation instrument (10) off an axis of observation centerline (14) for the observation instrument (10). A retainer (16) is mounted with the observation instrument (10) to secure the first detector (12) to the observation instrument (10). The retainer (16) permits rotatable movement of the first detector (12) about the axis of observation centerline (14). The retainer (16) also preferably includes an attachment point (20) for mounting the first detector (12) to the retainer (16). The first detector (12) should be adjustable at least about an axis (22) essentially perpendicular to the axis of the observation centerline (14) for the observation instrument (10).