Abstract:
An integrated radiation therapy process comprises acquiring first objective target data related to a parameter of a target within a patient by periodically locating a marker positioned within the patient using a localization modality. This method continues with obtaining second objective target data related to the parameter of the target by periodically locating the marker. The first objective target data can be acquired in a first area that is apart from a second area which contains a radiation delivery device for producing an ionizing radiation beam for treating the patient. The localization modality can be the same in both the first and second areas. In other embodiments, the first objective target data can be acquired using a first localization modality that uses a first energy type to identify the marker and the second objective target data can be obtained using a second localization modality that uses a second energy.
Abstract:
A facility for facilitating custom radiation treatment planning is described. During a distinguished radiation treatment session for a patient, the facility collects data indicating positioning of a predefined treatment site of the patient relative to a target treatment location throughout the distinguished radiation treatment session. The facility associates the collected positioning data with data describing one or more other aspects of the distinguished radiation treatment session. The facility provides the associated data to a treatment planning facility to determine a treatment plan for future radiation treatment sessions for the patient.
Abstract:
Method and system fiducials contained in removable a device for use in guided radiation therapy treatment. One embodiment includes an active marker configured to be pre-loaded into a catheter for removeably implanting in the tissue of a patient. Another embodiment of the implantable device includes a stability element coupled to the marker and further coupled to an explant line. In some embodiments, the stability element is configured to hold the marker at a fixed location within the catheter (e.g., known location) with respect to a target in the tissue. In other embodiments, the explant line has a first portion coupled to the marker and/or the stability element and a second portion configured to be at least proximate to the dermis of the patient.
Abstract:
An integrated radiation therapy process comprises acquiring first objective target data related to a parameter of a target within a patient by periodically locating a marker positioned within the patient using a localization modality. This method continues with obtaining second objective target data related to the parameter of the target by periodically locating the marker. The first objective target data can be acquired in a first area that is apart from a second area which contains a radiation delivery device for producing an ionizing radiation beam for treating the patient. The localization modality can be the same in both the first and second areas. In other embodiments, the first objective target data can be acquired using a first localization modality that uses a first energy type to identify the marker and the second objective target data can be obtained using a second localization modality that uses a second energy type to identify the marker that is different than the first energy type.
Abstract:
An integrated radiation therapy process comprises acquiring first objective target data related to a parameter of a target within a patient by periodically locating a marker positioned within the patient using a localization modality. This method continues with obtaining second objective target data related to the parameter of the target by periodically locating the marker. The first objective target data can be acquired in a first area that is apart from a second area which contains a radiation delivery device for producing an ionizing radiation beam for treating the patient. The localization modality can be the same in both the first and second areas. In other embodiments, the first objective target data can be acquired using a first localization modality that uses a first energy type to identify the marker and the second objective target data can be obtained using a second localization modality that uses a second energy.
Abstract:
A system and method for accurately locating and tracking the position of a target, such as a tumor or the like, within a body. In one embodiment, the system is a target locating and monitoring system usable with a radiation delivery source that delivers selected doses of radiation to a target in a body. The system includes one or more excitable markers positionable in or near the target, an external excitation source that remotely excites the markers to produce an identifiable signal, and a plurality of sensors spaced apart in a known geometry relative to each other. A computer is coupled to the sensors and configured to use the marker measurements to identify a target isocenter within the target. The computer compares the position of the target isocenter with the location of the machine isocenter. The computer also controls movement of the patient and a patient support device so the target isocenter is co-incident with the machine isocenter before and during radiation therapy.
Abstract:
Systems and methods for locating and tracking a target, i.e., measuring the position and/or rotation of a target during setup and treatment of a patient in guided radiation therapy applications for the head and neck. One embodiment is directed toward a device having a body and markers, such as excitable transponders and/or radiographic fiducials, fixable in or on the body for localizing the body. For example, the body can be a mouthpiece body having a channel configured to receive a patient's teeth such that the mouthpiece is repeatedly and consistently placed in the same relative position in the patient when the patient bites down on the mouthpiece. The transponders can be alternating magnetic transponders and the fiducials can be gold seeds. Other embodiments include a device having a two-piece body, a first piece of the body having excitable transponders and a second piece of the body having radiographic fiducials.
Abstract:
Systems and methods for treating a lung of a patient. One embodiment of a method comprises positioning a leadless marker in the lung of the patient relative to the target, and collecting position data of the marker. This method further comprises determining the location of the marker in an external reference frame outside of the patient based on the collected position data, and providing an objective output in the external reference frame that is responsive to movement of the marker. The objective output is provided at a frequency (i.e., periodicity) that results in a clinically acceptable tracking error. In addition, the objective output can also be provided at least substantially contemporaneously with collecting the position data used to determine the location of the marker.
Abstract:
A system and method for accurately locating and tracking the position of a target, such as a tumor or the like, within a body. In one embodiment, the system is a target locating and monitoring system usable with a radiation delivery source that delivers a selected doses of radiation to a target in a body. The system includes one or more excitable beacons positionable in or near the target, an external excitation source that remotely excites the beacons to produce an identifiable signal, and a plurality of sensors spaced apart in a known geometry relative to each other. A computer is coupled to the sensors and configured to use the beacon measurements to identify a target isocenter within the target. The computer compares the position of the target isocenter with the location of the machine isocenter. The computer also controls movement of the patient and a patient support device so the target isocenter is coincident with the machine isocenter before and during radiation therapy.
Abstract:
A system and method for accurately locating and tracking the position of a target, such as a tumor or the like, within a body. In one embodiment, the system is a target locating and monitoring system usable with a radiation delivery source that delivers a selected doses of radiation to a target in a body. The system includes one or more excitable beacons positionable in or near the target, an external excitation source that remotely excites the beacons to produce an identifiable signal, and a plurality of sensors spaced apart in a known geometry relative to each other. A computer is coupled to the sensors and configured to use the beacon measurements to identify a target isocenter within the target. The computer compares the position of the target isocenter with the location of the machine isocenter. The computer also controls movement of the patient and a patient support device so the target isocenter is coincident with the machine isocenter before and during radiation therapy.