摘要:
A system is provided for utilizing belt movement information in a motorized seat belt (MSB) control system algorithm to achieve better levels of comfort and safety. The MSB control system algorithm controls execution of multiple modes including a no friction mode, a stowage mode, a slack reduction mode, an out of position warning mode, a medium pull-back mode, and a high pull-back mode. The MSB control system algorithm also controls execution of a low power mode initiated after the other vehicle modules are put to sleep to provide the ability to stow the seat belt after the vehicle has been turned off for some period of time. The MSB control system algorithm also controls belt monitoring functions defined based on a buckle switch state that indicates the buckled or unbuckled state of the seat belt. Belt monitoring consists of belt movement being converted to counts based on a resolution provided by a belt movement sensor.
摘要:
A system is provided for utilizing belt movement information in a motorized seat belt (MSB) control system algorithm to achieve better levels of comfort and safety. The MSB control system algorithm controls execution of multiple modes including a no friction mode, a stowage mode, a slack reduction mode, an out of position warning mode, a medium pull-back mode, and a high pull-back mode. The MSB control system algorithm also controls execution of a low power mode initiated after the other vehicle modules are put to sleep to provide the ability to stow the seat belt after the vehicle has been turned off for some period of time. The MSB control system algorithm also controls belt monitoring functions defined based on a buckle switch state that indicates the buckled or unbuckled state of the seat belt. Belt monitoring consists of belt movement being converted to counts based on a resolution provided by a belt movement sensor.
摘要:
A system is provided for utilizing belt movement information in a motorized seat belt (MSB) control system algorithm to achieve better levels of comfort and safety. The MSB control system algorithm controls execution of multiple modes including a no friction mode, a stowage mode, a slack reduction mode, an out of position warning mode, a medium pull-back mode, and a high pull-back mode. The MSB control system algorithm also controls execution of a low power mode initiated after the other vehicle modules are put to sleep to provide the ability to stow the seat belt after the vehicle has been turned off for some period of time. The MSB control system algorithm also controls belt monitoring functions defined based on a buckle switch state that indicates the buckled or unbuckled state of the seat belt. Belt monitoring consists of belt movement being converted to counts based on a resolution provided by a belt movement sensor.
摘要:
A system is provided for utilizing belt movement information in a motorized seat belt (MSB) control system algorithm to achieve better levels of comfort and safety. The MSB control system algorithm controls execution of multiple modes including a no friction mode, a stowage mode, a slack reduction mode, an out of position warning mode, a medium pull-back mode, and a high pull-back mode. The MSB control system algorithm also controls execution of a low power mode initiated after the other vehicle modules are put to sleep to provide the ability to stow the seat belt after the vehicle has been turned off for some period of time. The MSB control system algorithm also controls belt monitoring functions defined based on a buckle switch state that indicates the buckled or unbuckled state of the seat belt. Belt monitoring consists of belt movement being converted to counts based on a resolution provided by a belt movement sensor.
摘要:
A system is provided for utilizing belt movement information in a motorized seat belt (MSB) control system algorithm to achieve better levels of comfort and safety. The MSB control system algorithm controls execution of multiple modes including a no friction mode, a stowage mode, a slack reduction mode, an out of position warning mode, a medium pull-back mode, and a high pull-back mode. The MSB control system algorithm also controls execution of a low power mode initiated after the other vehicle modules are put to sleep to provide the ability to stow the seat belt after the vehicle has been turned off for some period of time. The MSB control system algorithm also controls belt monitoring functions defined based on a buckle switch state that indicates the buckled or unbuckled state of the seat belt. Belt monitoring consists of belt movement being converted to counts based on a resolution provided by a belt movement sensor.
摘要:
A system is provided for utilizing belt movement information in a motorized seat belt (MSB) control system algorithm to achieve better levels of comfort and safety. The MSB control system algorithm controls execution of multiple modes including a no friction mode, a stowage mode, a slack reduction mode, an out of position warning mode, a medium pull-back mode, and a high pull-back mode. The MSB control system algorithm also controls execution of a low power mode initiated after the other vehicle modules are put to sleep to provide the ability to stow the seat belt after the vehicle has been turned off for some period of time. The MSB control system algorithm also controls belt monitoring functions defined based on a buckle switch state that indicates the buckled or unbuckled state of the seat belt. Belt monitoring consists of belt movement being converted to counts based on a resolution provided by a belt movement sensor.
摘要:
An accessible work cell is provided. In one embodiment, the accessible work cell a plurality of walls defining at least one work zone and at least one pair of sliding doors that provides access to the work zone. The pair of sliding doors includes an upper sliding door and a lower sliding door. The first upper sliding door is operatively connected to the lower sliding door such that movement of the upper sliding door in a first direction will cause the lower sliding door to move in a second direction opposite to the first direction.
摘要:
A method and an arrangement for uni- or bidirectional wireless communication of signals or data especially in a reflective environment like a MR imaging system, between at least one first transmitter and/or receiver unit (501, 601, 701; T/R1) and at least one second transmitter and/or receiver unit (801; T/R2) is disclosed. The reliability and availability of the communication link especially in a highly reflective environment is improved especially by using spread spectrum technology and ultra wide band carrier frequencies.
摘要翻译:一种用于信号或数据的单向或双向无线通信的方法和装置,特别是在诸如MR成像系统的反射环境中,在至少一个第一发射机和/或接收机单元(501,601,701; T / R1)和 公开了至少一个第二发射机和/或接收机单元(801; T / R2)。 特别是在高反射环境中通信链路的可靠性和可用性得到了改进,特别是通过使用扩频技术和超宽带载波频率。
摘要:
An intervertebral prosthetic implant having a first endplate having a first surface configured to substantially engage with a first vertebral body and a second surface having an extension with a concave contact surface, the concave contact surface being spaced apart from the second surface. A second endplate is provided with a first surface configured to substantially engage with a second vertebral body and a second surface comprising a convex contact surface, and the second endplate having a securing element positioned along and above the second surface defining a first and second window on opposing sides of the second surface. The securing element extends along the width and length of the lower endplate and configured with an access hole. An extension portion extends from the first surface of the first endplate through the access hole of the securing element and contacts the second surface of the second endplate.
摘要:
A method for inserting an intervertebral artificial disc is provided with the intervertebral disc including a first endplate having a plurality of protrusions for attaching to an adjacent vertebrae and an extension portion extending towards a second adjacent vertebrae. A second endplate is provided with a plurality of protrusions for attaching to a second adjacent vertebrae and an extension portion extending towards the first adjacent vertebrae. A flexible member having an upper portion and a lower portion and a slider plate positioned within the upper portion of the flexible member is also provided. The extension portion of the first endplate is adapted to fit within a first cavity in the upper portion of the flexible member and the extension portion of the second endplate is adapted to fit within a second cavity in the lower portion of the flexible member.