摘要:
The present invention provides a method and an apparatus for predicting and calculating an amount of harmful oxide such as NOx contained in an exhaust gas from a reference concentration of harmful oxide, which is previously determined by a type of fuel supplied to a fluidized bed combustor, an amount of change of an air ratio and an amount of change of a gas residence time to the conditions of a specific air ratio and gas residence time in the combustor, and injecting a treatment agent such as NH.sub.3 in an amount optimum to the predicted amount into an exhaust gas. With this arrangement, an amount of harmful oxide in the exhaust gas can be securely lowered to a target value.
摘要:
A method of and apparatus for detecting an abnormality of a fluidized bed boiler is characterized in that an abnormality of the fluidized bed boiler is detected on the basis of a physical quantity related to a condition change of a gas existing in a space defined by a pressure vessel and the fluidized bed boiler accommodated within the pressure vessel.
摘要:
A combined cycle power generating plant has a fluidized bed furnace and a heat exchanger disposed therein, a steam turbine which is driven by steam generated in the heat exchanger and a gas turbine which is driven by combustion gas generated in the fluidized bed furnace. If the output of the whole of the plant is increased, the pressure in the fluid bed furnace is increased by supplying water into the fluidized bed furnace and then the amount of steam generated in the heat exchanger is increased by elevating the height of the fluidized bed.
摘要:
The reforming of heavy oil with supercritical water or subcritical water is accomplished by mixing together supercriticai water, heavy oil, and oxidizing agent, thereby oxidizing vanadium in heavy oil with the oxidizing agent at the time of treatment with supercritical water and separate vanadium oxide. The separated vanadium oxide is removed by the scavenger after treatment with supercritical water. In this way it is possible to solve the long-standing problem with corrosion of turbine blades by vanadium which arises when heavy oil is used as gas turbine fuel.
摘要:
The reforming of heavy oil with supercritical water or subcritical water is accomplished by mixing together supercritical water, heavy oil, and oxidizing agent, thereby oxidizing vanadium in heavy oil with the oxidizing agent at the time of treatment with supercritical water and separate vanadium oxide. The separated vanadium oxide is removed by the scavenger after treatment with supercritical water. In this way it is possible to solve the long-standing problem with corrosion of turbine blades by vanadium which arises when heavy oil is used as gas turbine fuel.
摘要:
The reforming of heavy oil with supercritical water or subcritical water is accomplished by mixing together supercritical water, heavy oil, and oxidizing agent, thereby oxidizing vanadium in heavy oil with the oxidizing agent at the time of treatment with supercritical water and separate vanadium oxide. The separated vanadium oxide is removed by the scavenger after treatment with supercritical water. In this way it is possible to solve the long-standing problem with corrosion of turbine blades by vanadium which arises when heavy oil is used as gas turbine fuel.
摘要:
The purpose of the invention is to provide a heavy oil reforming method which reforms a heavy oil to give a fuel suitable for a gas turbine, eliminates sulfur and vanadium, i.e., harmful components, from a heavy oil, and enables almost all the hydrocarbons in the heavy oil to be used in gas turbine combustion; an apparatus therefor; and a gas turbine power generation system using the reformed heavy oil as fuel. This method comprises reacting a heavy oil with supercritical water and then with a scavenger for sulfur and vanadium to eliminate sulfur and vanadium from the heavy oil. The apparatus for reforming a heavy oil is equipped with a reactor for reacting a heavy oil with supercritical water, a scavenging apparatus filled with a scavenger for scavenging sulfur and vanadium in the heavy oil, and a connecting pipe for connecting the reactor and the scavenging apparatus. The gas turbine power generation system has a burner for burning a heavy oil reformed with the reforming apparatus and a gas turbine driven by a combustion gas generated by the burner.
摘要:
A heavy oil reforming method which reforms a heavy oil to give a fuel suitable for a gas turbine, eliminates sulfur and vanadium, i.e., harmful components, from a heavy oil, and enables almost all the hydrocarbons in the heavy oil to be used in gas turbine combustion; an apparatus therefor; and a gas turbine power generation system using the reformed heavy oil as fuel is disclosed. The method includes reacting a heavy oil with supercritical water and then with a scavenger for sulfur and vanadium to eliminate sulfur and vanadium from the heavy oil.
摘要:
The reforming of heavy oil with supercritical water or subcritical water is accomplished by mixing together supercritical water, heavy oil, and oxidizing agent, thereby oxidizing vanadium in heavy oil with the oxidizing agent at the time of treatment with supercritical water and separate vanadium oxide. The separated vanadium oxide is removed by the scavenger after treatment with supercritical water. In this way it is possible to solve the long-standing problem with corrosion of turbine blades by vanadium which arises when heavy oil is used as gas turbine fuel.
摘要:
The reforming of heavy oil with supercritical water or subcritical water is accomplished by mixing together supercritical water, heavy oil, and oxidizing agent, thereby oxidizing vanadium in heavy oil with the oxidizing agent at the time of treatment with supercritical water and separate vanadium oxide. The separated vanadium oxide is removed by the scavenger after treatment with supercritical water. In this way it is possible to solve the long-standing problem with corrosion of turbine blades by vanadium which arises when heavy oil is used as gas turbine fuel.