摘要:
A photoelectrochemical cell (100) includes: a semiconductor electrode (120) including a conductor (121) and semiconductor layers (122, 123) disposed on the conductor (121); a counter electrode (130) connected electrically to the conductor (121); an electrolyte (140) in contact with surfaces of the semiconductor layer (123) and the counter electrode (130); and a container (110) accommodating the semiconductor electrode (120), the counter electrode (130) and the electrolyte (140). A band edge level ECS of a conduction band, a band edge level EVS of a valence band, and a Fermi level EFS in a surface near-field region of the semiconductor layer, and a band edge level ECJ of a conduction band, a band edge level EVJ of a valence band, and a Fermi level EFJ in a junction plane near-field region of the semiconductor layer with the conductor satisfy, relative to a vacuum level, ECS-EFS>ECJ-EFJ, EFS-EVS −4.44 eV, and EVS
摘要:
A photoelectrochemical cell (100) includes: a semiconductor electrode (120) including a conductor (121), a first n-type semiconductor layer (122) having a nanotube array structure, and a second n-type semiconductor layer (123); a counter electrode (130) connected to the conductor (121); an electrolyte (140) in contact with the second n-type semiconductor layer (123) and the counter electrode (130); and a container (110) accommodating the semiconductor electrode (120), the counter electrode (130) and the electrolyte (140). Relative to a vacuum level, (I) band edge levels of a conduction band and a valence band in the second n-type semiconductor layer (123), respectively, are higher than band edge levels of a conduction band and a valence band in the first n-type semiconductor layer (122), (II) a Fermi level of the first n-type semiconductor layer (122) is higher than a Fermi level of the second n-type semiconductor layer (123), and (III) a Fermi level of the conductor (121) is higher than the Fermi level of the first n-type semiconductor layer (122).
摘要:
A photoelectrochemical cell (100) includes: a semiconductor electrode (120) including a conductor (121) and semiconductor layers (122, 123) disposed on the conductor (121); a counter electrode (130) connected electrically to the conductor (121); an electrolyte (140) in contact with surfaces of the semiconductor layer (123) and the counter electrode (130); and a container (110) accommodating the semiconductor electrode (120), the counter electrode (130) and the electrolyte (140). A band edge level ECS of a conduction band, a band edge level EVS of a valence band, and a Fermi level EFS in a surface near-field region of the semiconductor layer, and a band edge level ECJ of a conduction band, a band edge level EVJ of a valence band, and a Fermi level EFJ in a junction plane near-field region of the semiconductor layer with the conductor satisfy, relative to a vacuum level, ECS−EFS>ECJ−EFJ, EFS−EVS −4.44 eV, and EVS
摘要:
A photoelectrochemical cell (100) includes: a semiconductor electrode (120) including a conductor (121), a first n-type semiconductor layer (122) having a nanotube array structure, and a second n-type semiconductor layer (123); a counter electrode (130) connected to the conductor (121); an electrolyte (140) in contact with the second n-type semiconductor layer (123) and the counter electrode (130); and a container (110) accommodating the semiconductor electrode (120), the counter electrode (130) and the electrolyte (140). Relative to a vacuum level, (I) band edge levels of a conduction band and a valence band in the second n-type semiconductor layer (123), respectively, are higher than band edge levels of a conduction band and a valence band in the first n-type semiconductor layer (122), (II) a Fermi level of the first n-type semiconductor layer (122) is higher than a Fermi level of the second n-type semiconductor layer (123), and (III) a Fermi level of the conductor (121) is higher than the Fermi level of the first n-type semiconductor layer (122).
摘要:
The optically pumped semiconductor according to the present invention is an optically pumped semiconductor that is a semiconductor of a perovskite oxide. The optically pumped semiconductor has a composition represented by a general formula: BaZr1-xMxO3-α, where M denotes at least one element selected from trivalent elements, x denotes a numerical value more than 0 but less than 0.8, and α denotes an amount of oxygen deficiency that is a numerical value more than 0 but less than 1.5. The optically pumped semiconductor has a crystal system of a cubic, tetragonal, or orthorhombic crystal. When lattice constants of the crystal system are referred to as a, b, and c, provided that a≦b≦c, conditions that 0.41727 nm≦a, b, c≦0.42716 nm and a/c≧0.98 are satisfied.
摘要:
The method for producing the optical semiconductor of the present disclosure includes a mixing step of producing a mixture containing a reduction inhibitor and a niobium compound that contains at least oxygen in its composition; a nitriding step of nitriding the mixture by the reaction between the mixture and a nitrogen compound gas; and a washing step of isolating niobium oxynitride from the material obtained through the nitriding step by dissolving chemical species other than niobium oxynitride with a washing liquid. The optical semiconductor of the present disclosure substantially consists of niobium oxynitride having a crystal structure of baddeleyite and having a composition represented by the composition formula, NbON.
摘要:
The hydrogen production device of the present invention includes: a first electrode (120) including a conductive substrate (101) and a photocatalytic semiconductor layer (102); a second electrode (103) that is electrically connected to the first electrode (120) and disposed in a second region (123) opposite to a first region (122) relative to the first electrode (120), when the first region (122) is defined as a region on a side of a surface of the first electrode (120) in which the photocatalytic semiconductor layer (102) is provided; a water-containing electrolyte solution (106); and a housing (105) containing these. The first electrode (120) is provided with a through-hole (131) at a position and the second electrode (103) is provided with a through-hole (132) at a position corresponding to the position, and the through-holes form a communicating hole (130) for allowing the first region (122) and the second region (123) to communicate with each other. An ion exchange membrane (104) having substantially the same shape as the communicating hole (130) is disposed in the communicating hole (130) to close the communicating hole (130).
摘要:
A photoelectrochemical cell (1) includes: an optical semiconductor electrode (first electrode) (3) including a conductive substrate (3a) and an n-type semiconductor layer (3b) as an optical semiconductor layer disposed on the conductive substrate (3a); a counter electrode (second electrode) (4) disposed to face the surface of the optical semiconductor electrode (3) on the conductive substrate (3a) side and connected electrically to the conductive substrate (3a); an electrolyte solution (11) containing water and disposed in contact with the surface of the n-type semiconductor layer (3b) and the surface of the counter electrode (4); a container (2) in which the optical semiconductor electrode (3), the counter electrode (4), and the electrolyte solution (11) are disposed; an inlet (5) for supplying water into the container; and an ion passing portion (12) that allows ions to move between the electrolyte solution in a region A on the surface side of the n-type semiconductor layer (3b) and the electrolyte solution in a region B on the opposite side of the region A with respect to the optical semiconductor electrode (3).
摘要:
The hydrogen production device of the present invention includes: a first electrode including a conductive substrate and a photocatalytic semiconductor layer; a second electrode that is electrically connected to the first electrode and disposed in a second region opposite to a first region relative to the first electrode; the first region is defined as a region on a side of a surface of the first electrode in which the photocatalytic semiconductor layer is provided; a water-containing electrolyte solution; and a housing containing these. The first electrode is provided with first through-holes and the second electrode is provided with second through-holes; and the first through-holes and second through-holes form a communicating hole for allowing the first region and the second region to communicate with each other. An ion exchange membrane having substantially the same shape as the communicating hole is disposed in the communicating hole to close the communicating hole.
摘要:
A photoelectrode (100) of the present invention includes a conductive layer (12) and a photocatalytic layer (13) provided on the conductive layer (12). The conductive layer (12) is made of a metal nitride. The photocatalytic layer (13) is made of at least one selected from the group consisting of a nitride semiconductor and an oxynitride semiconductor. When the photocatalytic layer (13) is made of a n-type semiconductor, the energy difference between the vacuum level and the Fermi level of the conductive layer (12) is smaller than the energy difference between the vacuum level and the Fermi level of the photocatalytic layer (13).When the photocatalytic layer (13) is made of a p-type semiconductor, the energy difference between the vacuum level and the Fermi level of the conductive layer (12) is larger than the energy difference between the vacuum level and the Fermi level of the photocatalytic layer (13).