摘要:
A method of forming an impurity-introduced layer is disclosed. The method includes at least a step of forming a resist pattern on a principal face of a solid substrate such as a silicon substrate (S27); a step of introducing impurity into the solid substrate through plasma-doping in ion mode (S23), a step of removing a resist (S28), a step of cleaning metal contamination and particles attached to a surface of the solid substrate (S25a); a step of anneal (S26). The step of removing a resist (S28) irradiates the resist with oxygen-plasma or brings mixed solution of sulfuric acid and hydrogen peroxide water, or mixed solution of NH4OH, H2O2 and H2O into contact with the resist. The step of cleaning (S25a) brings mixed solution of sulfuric acid and hydrogen peroxide water, or mixed solution of NH4OH, H2O2 and H2O into contact with the principal face of the solid substrate. The step of removing a resist (S28) and the step of cleaning (S25a) can be conducted simultaneously by bringing mixed solution of sulfuric acid and hydrogen peroxide water, or mixed solution of NH4OH, H2O2 and H2O into contact with the principal face of the solid substrate.
摘要翻译:公开了一种形成杂质导入层的方法。 该方法至少包括在诸如硅衬底的固体衬底的主面上形成抗蚀剂图案的步骤(S27); 通过离子模式的等离子体掺杂(S23)将杂质引入固体基板的步骤,去除抗蚀剂的步骤(S28),清洁附着在固体基板表面上的金属污染物和颗粒的步骤(S25a); 退火步骤(S26)。 去除抗蚀剂的步骤(S28)用氧等离子体照射抗蚀剂,或者将硫酸和过氧化氢水的混合溶液,或NH 4 OH,H 2 O 2和H 2 O的混合溶液与抗蚀剂接触。 清洗步骤(S25a)将硫酸和过氧化氢水或NH 4 OH,H 2 O 2和H 2 O的混合溶液混合溶液与固体基质的主面接触。 除去抗蚀剂(S28)和清洗步骤(S25a)的步骤可以通过将硫酸和过氧化氢水的混合溶液或NH 4 OH,H 2 O 2和H 2 O的混合溶液与主要面接触来同时进行 固体基质。
摘要:
To provide an impurity introducing method which can repeatedly carry out such a process that plasma irradiation for realization of amorphous and plasma doping were combined, in such a situation that steps are simple and through-put is high, without destroying an apparatus.At the time of switching over plasmas which are used in plasma irradiation for realization of amorphous and plasma doping, electric discharge is stopped, and an initial condition of a matching point of a high frequency power supply and a peripheral circuit is reset so as to adapt to plasma which is used in each step, or at the time of switching, a load, which is applied to the high frequency power supply etc., is reduced by increasing pressure and decreasing a bias voltage.
摘要:
With the evacuation of an interior of a vacuum chamber halted and with gas supply into the vacuum chamber halted, in a state that a mixed gas of helium gas and diborane gas is sealed in the vacuum chamber, a plasma is generated in a vacuum vessel and simultaneously a high-frequency power is supplied to a sample electrode. By the high-frequency power supplied to the sample electrode, boron is introduced to a proximity to a substrate surface.
摘要:
It is intended to provide a plasma processing method and apparatus capable of increasing the uniformity of amorphyzation processing.A prescribed gas is introduced into a vacuum container 1 from a gas supply apparatus 2 through a gas inlet 11 while being exhausted by a turbomolecular pump 3 as an exhaust apparatus through an exhaust hole 12. The pressure in the vacuum container 1 is kept at a prescribed value by a pressure regulating valve 4. High-frequency electric power of 13.56 MHz is supplied from a high-frequency power source 5 to a coil 8 disposed close to a dielectric window 7 which is opposed to a sample electrode 6, whereby induction-coupled plasma is generated in the vacuum container 1. A high-frequency power source 10 for supplying high-frequency electric power to the sample electrode 6 is provided and functions as a voltage source for controlling the potential of the sample electrode 6. A surface crystal layer of a silicon wafer 9 was rendered amorphous successfully by improving the structure of the sample-electrode 6.
摘要:
The invention provides a method of doping impurities that includes a step of doping impurities in a solid base substance by using a plasma doping method, a step of forming a light antireflection layer that functions to reduce light reflection on the surface of the solid base substance, and a step of performing annealing by light radiation. According to the method, it is possible to reduce the reflectance of light radiated during annealing, to efficiently apply energy an impurity doped layer, to improve activation efficiency, to prevent diffusion, and to reduce sheet resistance of the impurity doped layer.
摘要:
It is intended to provide a plasma processing method and apparatus capable of increasing the uniformity of amorphyzation processing.A prescribed gas is introduced into a vacuum container 1 from a gas supply apparatus 2 through a gas inlet 11 while being exhausted by a turbomolecular pump 3 as an exhaust apparatus through an exhaust hole 12. The pressure in the vacuum container 1 is kept at a prescribed value by a pressure regulating valve 4. High-frequency electric power of 13.56 MHz is supplied from a high-frequency power source 5 to a coil 8 disposed close to a dielectric window 7 which is opposed to a sample electrode 6, whereby induction-coupled plasma is generated in the vacuum container 1. A high-frequency power source 10 for supplying high-frequency electric power to the sample electrode 6 is provided and functions as a voltage source for controlling the potential of the sample electrode 6. A surface crystal layer of a silicon wafer 9 was rendered amorphous successfully by improving the structure of the sample-electrode 6.
摘要:
The invention provides a method of doping impurities that includes a step of doping impurities in a solid base substance by using a plasma doping method, a step of forming a light antireflection layer that functions to reduce light reflection on the surface of the solid base substance, and a step of performing annealing by light radiation. According to the method, it is possible to reduce the reflectance of light radiated during annealing, to efficiently apply energy an impurity doped layer, to improve activation efficiency, to prevent diffusion, and to reduce sheet resistance of the impurity doped layer.
摘要:
With evacuation of an interior of a vacuum chamber halted and with gas supply into the vacuum chamber halted, in a state that a mixed gas of helium gas and diborane gas is sealed in the vacuum chamber, a plasma is generated in a vacuum vessel and simultaneously a high-frequency power is supplied to a sample electrode. By the high-frequency power supplied to the sample electrode, boron is introduced to a proximity to a substrate surface.
摘要:
With evacuation of interior of a vacuum chamber halted and with gas supply into the vacuum chamber halted, in a state that a mixed gas of helium gas and diborane gas is sealed in the vacuum chamber, a plasma is generated in a vacuum vessel and simultaneously a high-frequency power is supplied to a sample electrode. By the high-frequency power supplied to the sample electrode, boron is introduced to a proximity to the substrate surface.
摘要:
With evacuation of interior of a vacuum chamber halted and with gas supply into the vacuum chamber halted, in a state that a mixed gas of helium gas and diborane gas is sealed in the vacuum chamber, a plasma is generated in a vacuum vessel and simultaneously a high-frequency power is supplied to a sample electrode. By the high-frequency power supplied to the sample electrode, boron is introduced to a proximity to the substrate surface.