摘要:
There are provided a capacitor lower electrode formed on an adhesive layer, whose surface roughness is 0.79 nm or less, and having a (111) orientation that is inclined from a perpendicular direction to an upper surface of a substrate by 2.3° or less, a ferroelectric layer having a structure the (111) orientation of which is inclined from the perpendicular direction to the upper surface of the substrate by 3.5° or less, and a capacitor upper electrode.
摘要:
There are provided a capacitor lower electrode formed on an adhesive layer, whose surface roughness is 0.79 nm or less, and having a (111) orientation that is inclined from a perpendicular direction to an upper surface of a substrate by 2.3° or less, a ferroelectric layer having a structure the (111) orientation of which is inclined from the perpendicular direction to the upper surface of the substrate by 3.5° or less, and a capacitor upper electrode.
摘要:
There are provided a capacitor lower electrode formed on an adhesive layer, whose surface roughness is 0.79 nm or less, and having a (111) orientation that is inclined from a perpendicular direction to an upper surface of a substrate by 2.3° or less, a ferroelectric layer having a structure the (111) orientation of which is inclined from the perpendicular direction to the upper surface of the substrate by 3.5° or less, and a capacitor upper electrode.
摘要:
There are provided a capacitor lower electrode formed on an adhesive layer, whose surface roughness is 0.79 nm or less, and having a (111) orientation that is inclined from a perpendicular direction to an upper surface of a substrate by 2.3° or less, a ferroelectric layer having a structure the (111) orientation of which is inclined from the perpendicular direction to the upper surface of the substrate by 3.5° or less, and a capacitor upper electrode.
摘要:
The present invention provides a method for manufacturing a semiconductor device, including the steps of: forming a first ferroelectric film on a first conductive film by a film-forming method including at least a step of forming a film by a sol-gel method; forming a second ferroelectric film on the first ferroelectric film by a sputtering method; forming a second conductive film on the second ferroelectric film; and forming a capacitor provided with a lower electrode, a capacitor dielectric film and an upper electrode by patterning the first conductive film, the first and second ferroelectric films and the second conductive film.
摘要:
The present invention provides a method for manufacturing a semiconductor device, including the steps of: forming a ferroelectric film on a first conductive film by a sol-gel method; forming a first conductive metal oxide film on the ferroelectric film; carrying out a first annealing on the first conductive metal oxide film; forming a second conductive metal oxide film on the first conductive metal oxide film, so that the first and second conductive films serve as a second conductive film; and forming a capacitor by patterning the first conductive film, the ferroelectric film and the second conductive film. In the step of forming the first conductive metal oxide film, ferroelectric characteristics are adjusted with a flow rate ratio of oxygen by utilizing the fact that the ferroelectric characteristics of the ferroelectric film improve as the flow rate ratio of oxygen in a sputtering gas increases.
摘要:
The present invention provides a method for manufacturing a semiconductor device, including the steps of: forming a first ferroelectric film on a first conductive film by a film-forming method including at least a step of forming a film by a sol-gel method; forming a second ferroelectric film on the first ferroelectric film by a sputtering method; forming a second conductive film on the second ferroelectric film; and forming a capacitor provided with a lower electrode, a capacitor dielectric film and an upper electrode by patterning the first conductive film, the first and second ferroelectric films and the second conductive film.
摘要:
The present invention provides a method for manufacturing a semiconductor device, including the steps of: forming a first ferroelectric film on a first conductive film by a film-forming method including at least a step of forming a film by a sol-gel method; forming a second ferroelectric film on the first ferroelectric film by a sputtering method; forming a second conductive film on the second ferroelectric film; and forming a capacitor provided with a lower electrode, a capacitor dielectric film and an upper electrode by patterning the first conductive film, the first and second ferroelectric films and the second conductive film.
摘要:
The present invention provides a method for manufacturing a semiconductor device, including the steps of: forming a first ferroelectric film on a first conductive film by a film-forming method including at least a step of forming a film by a sol-gel method; forming a second ferroelectric film on the first ferroelectric film by a sputtering method; forming a second conductive film on the second ferroelectric film; and forming a capacitor provided with a lower electrode, a capacitor dielectric film and an upper electrode by patterning the first conductive film, the first and second ferroelectric films and the second conductive film.
摘要:
The present invention provides a method for manufacturing a semiconductor device, including the steps of: forming a ferroelectric film on a first conductive film by a sol-gel method; forming a first conductive metal oxide film on the ferroelectric film; carrying out a first annealing on the first conductive metal oxide film; forming a second conductive metal oxide film on the first conductive metal oxide film, so that the first and second conductive films serve as a second conductive film; and forming a capacitor by patterning the first conductive film, the ferroelectric film and the second conductive film. In the step of forming the first conductive metal oxide film, ferroelectric characteristics are adjusted with a flow rate ratio of oxygen by utilizing the fact that the ferroelectric characteristics of the ferroelectric film improve as the flow rate ratio of oxygen in a sputtering gas increases.