摘要:
A copper powder that is excellent in weatherability and adapted for use in conductive paste is provided that contains 10-20,000 ppm, preferably 100-2,000 ppm, of Sn. The copper powder is particularly preferably one having an average particle diameter DM of 0.1-2 μm and, further, one wherein the particle diameter of at least 80% of all particles is in the range of 0.5 DM-1.5 DM. This copper powder can be produced, for example, by precipitating Cu metal by reduction of Cu ions in the presence of Sn ions.
摘要:
A copper powder that is excellent in weatherability and adapted for use in conductive paste is provided that contains 10-20,000 ppm, preferably 100-2,000 ppm, of Sn. The copper powder is particularly preferably one having an average particle diameter DM of 0.1-2 μm and, further, one wherein the particle diameter of at least 80% of all particles is in the range of 0.5 DM-1.5 DM. This copper powder can be produced, for example, by precipitating Cu metal by reduction of Cu ions in the presence of Sn ions.
摘要:
A copper powder that is excellent in weatherability and adapted for use in conductive paste is provided that contains 10-20,000 ppm, preferably 100-2,000 ppm, of Sn. The copper powder is particularly preferably one having an average particle diameter DM of 0.1-2 μm and, further, one wherein the particle diameter of at least 80% of all particles is in the range of 0.5 DM-1.5 DM. This copper powder can be produced, for example, by precipitating Cu metal by reduction of Cu ions in the presence of Sn ions.
摘要翻译:提供耐候性优异并适用于导电膏的铜粉,其含有10-20,000ppm,优选100-2,000ppm的Sn。 铜粉特别优选平均粒径DM为0.1〜2μm的颗粒,另外,所有颗粒的至少80%的粒径在0.5D M SMALLCAPS> -1.5 D M SMALLCAPS>。 该铜粉可以例如通过在Sn离子的存在下还原Cu离子而沉淀Cu金属来制造。
摘要:
A method of producing copper powder is provided that uses electrolytic cuprous oxide as the starting material for the production of copper powder suitable for a conductive filler whose particles have an average particle diameter of not greater than 1 μm or even not greater than 0.5 μm and are of uniform size. In one aspect, the method comprises a step of mixing cuprous oxide with a reducing agent in a liquor in which a protective colloid is present and to which a water-soluble copper salt has been added and in another aspect comprises a step of reducing a water-soluble copper salt in a liquor in which a protective colloid is present, thereby forming a slurry, and a step of reducing cuprous oxide in the presence of the slurry. As the water-soluble copper salt can be used, for example, 0.1-20 moles of a monovalent copper salt such as cuprous chloride per 100 moles of the cuprous oxide. As the protective colloid can be used 1-40 parts by mass of a water-soluble polymer per 100 parts by mass of the cuprous oxide.
摘要:
A method of producing copper powder is provided that uses electrolytic cuprous oxide as the starting material for the production of copper powder suitable for a conductive filler whose particles have an average particle diameter of not greater than 1 μm or even not greater than 0.5 μm and are of uniform size. In one aspect, the method comprises a step of mixing cuprous oxide with a reducing agent in a liquor in which a protective colloid is present and to which a water-soluble copper salt has been added and in another aspect comprises a step of reducing a water-soluble copper salt in a liquor in which a protective colloid is present, thereby forming a slurry, and a step of reducing cuprous oxide in the presence of the slurry. As the water-soluble copper salt can be used, for example, 0.1-20 moles of a monovalent copper salt such as cuprous chloride per 100 moles of the cuprous oxide. As the protective colloid can be used 1-40 parts by mass of a water-soluble polymer per 100 parts by mass of the cuprous oxide.
摘要:
A material expressed as a composition formula MXFe3-XO4 (where M is at least one of Mg and Mn, and 0≦X≦1) is a main component, and as a total amount, 0.1 to 2.5 weight percent of at least one of a Sr element and a Ca element is contained. Here, when ferrite particles are used as a carrier, in terms of obtaining a higher image density, the fluidity of the ferrite particles magnetized under a magnetic field of 1000/(4π) kA/m (1000 oersteds) is preferably 40 seconds or more. The residual magnetization σr is preferably 3 Am2/kg or more.
摘要:
The carrier core particles for electrophotographic developer have a volume size distribution with a median particle size ranging from 30 μm to 40 μm, the ratio of the carrier core particles having a diameter of 22 μm or lower in the volume size distribution is from 1.0% to 2.0%, the ratio of the carrier core particles having a diameter of 22 μm or lower in a number size distribution is 10% or lower, and the magnetization of the carrier core particles in an external magnetic field of 1000 Oe is from 50 emu/g to 75 emu/g.
摘要:
To provide a carrier for an electrophotographic developer in which high image quality and full colorization are possible while carrier scattering is reduced, and a method for producing the carrier, and an electrophotographic developer including the carrier. A carrier core material for an electrophotographic developer is produced so that the half-value width B of a peak having a maximum intensity in an XRD pattern satisfies B≦0.160 (degree). A carrier for an electrophotographic developer and an electrophotographic developer are produced from the carrier core material for an electrophotographic developer.
摘要:
Identifiers of a plurality of physical HBAs disposed in a real host are grouped into a virtual HBA(s) for each work application executed in the real host. A storage device of a management server manages a virtual HBA ID which is an identifier of the virtual HBA and physical HBA IDs which are identifiers of the grouped physical HBAs, which are associated with each other. A display device of the management server displays information on a virtual host in which the virtual HBA is virtually disposed.
摘要:
To provide a phosphor for manufacturing an one chip type LED illumination, etc, by combining a near ultraviolet/ultraviolet LED and a blue LED, and having an excellent emission efficiency including luminance. The phosphor is given as a general composition formula expressed by MmAaBbOoNn:Z, (where element M is one or more kinds of elements having bivalent valency, element A is one or more kinds of elements having tervalent valency, element B is one or more kinds of elements having tetravalent valency, O is oxygen, N is nitrogen, and element Z is one or more kinds of elements acting as an activator.), satisfying a=(1+x)×m, b=(4−x)×m, o=x×m, n=(7−x)×m, 0≦x≦1, wherein when excited by light in a wavelength range from 300 nm to 500 nm, the phosphor has an emission spectrum with a peak wavelength in a range from 500 nm to 620 nm.