Abstract:
A device according to an embodiment includes an array substrate, a color filter substrate including color filters corresponding to pixels, a liquid crystal layer provided between the substrates, a backlight unit, and a controller. The controller controls an application timing of a driving voltage to the pixel electrodes, and a light emission timing of the backlight unit. Each of the pixels has a shape elongated in a lateral direction. Identical colors of the pixels are arranged in the lateral direction, and different colors of the pixels are arranged in a vertical direction. Pixels neighboring in the lateral direction have shapes of line-symmetry with respect to a center line of the neighboring pixels, and liquid crystal molecules of them tilt in directions of the line-symmetry with respect to the center line when the driving voltage is applied to the pixel electrodes corresponding to the neighboring pixels.
Abstract:
A liquid crystal display device including: a counter substrate having a first transparent substrate, a laminate structure of a black layer and a first metal layer, and a plurality of terminal portions; a liquid crystal layer; an array substrate having a second transparent substrate, an active element, a second wiring layer formed of a second metal layer, and a light shielding layer. The counter substrate has the first wiring layer, a black matrix, and a first transparent resin layer laminated in this order. The black matrix has a line width larger than a line width (M1W) of the first wiring layer, overlapping the first wiring layer so as to include a pattern of the first wiring layer. The active element is covered with a light shielding pattern via a first insulation layer. A change in electrostatic capacitance produced between the first wiring layer and the second wiring layer is detected.
Abstract:
A liquid crystal display device includes an array substrate, a liquid crystal layer, and a color filter substrate facing the array substrate through the liquid crystal layer. The color filter substrate includes a carbon light-shielding layer, an organic pigment light-shielding layer, and color filters formed such that the organic pigment light-shielding layer overlaps with at least one of the color filters in a direction perpendicular to a substrate plane. The array substrate includes a first light sensor that detects light which passes through any of the color filters without passing through the organic pigment light-shielding layer in the direction perpendicular to the substrate plane. The array substrate further includes a second light sensor that detects light which passes through the organic pigment light-shielding layer and any of the color filters in the direction perpendicular to the substrate plane.
Abstract:
In a liquid crystal display device, a plurality of first light absorptive resin layer patterns, a plurality of metal layer patterns, a plurality of second light absorptive resin layer patterns, a transparent resin layer, and a plurality of transparent electrode patterns are laminated in this order on a surface of a first transparent substrate facing a liquid crystal layer; the plurality of the first light absorptive resin layer patterns, the plurality of the metal layer patterns, and the plurality of the second light absorptive resin layer patterns have openings formed therein, and are formed into the same shape when viewed in a laminating direction; the plurality of the metal layer patterns are arrayed in a first direction, being insulated from each other, the plurality of the transparent electrode patterns are arrayed in a second direction perpendicular to the first direction, being insulated from each other.
Abstract:
A display device substrate includes a transparent substrate, a frame member disposed on the transparent substrate and formed in a frame region surrounding a display region, a first transparent resin layer formed on the transparent substrate having the frame member formed thereon, a black matrix formed on the first transparent resin layer such that the display region is divided into plural openings in a matrix form, and a second transparent resin layer formed on the first transparent resin layer on which the black matrix is formed. The frame member includes carbon as a major colorant and has a light shielding property, and the black matrix includes at least one organic pigment as a major colorant.
Abstract:
A color filter substrate includes a transparent substrate having an effective display region and a frame region enclosing the effective display region, color filters including a first color filter, a second color filter and a third color filter having different colors, the color filters being formed in linear patterns on the transparent substrate such that adjacent two of the first, second, and third color filters are formed without a gap therebetween, and a light-shielding layer formed on the first color filter, the second color filter and the third color filter. The first color filter has a line width which is substantially ½ of a line width of the second color filter and a line width of the third color filter. The first color filter, the second color filter and the third color filter have no projection formed by an overlap of at least two color filters of different colors.
Abstract:
A black electrode substrate includes a transparent substrate having a first surface and a second surface opposite to the first surface, the second surface having a display region in a rectangular shape in plan view and an outer region outside of the display region, a black wiring forming a black electrode pattern that defines a plurality of pixel opening portions in the display region, and a transparent resin layer formed in the display region such that the transparent resin layer has the same rectangular shape as the display region in plan view. The black wiring has a laminated structure including a first black layer, a first indium-containing layer, a copper-containing layer, a second indium-containing layer, and a second black layer. The black wiring has a terminal portion formed such that the second indium-containing layer positioned in the outer region is exposed from the laminated structure.
Abstract:
A device according to an embodiment includes an array substrate including electrodes corresponding to pixels arranged in a matrix, a color filter substrate opposed to the array substrate and including color filters corresponding to the pixels, a liquid crystal layer provided between the substrates, a backlight, and a controller which controls the substrates and the backlight. The pixels are configured to each have a parallelogrammatic shape elongated in a lateral direction, such that identical colors are arranged in the lateral direction, and different colors are arranged in a vertical direction. Pixels neighboring in the lateral direction are in line-symmetry with respect to a center line of the neighboring pixels. Liquid crystal molecules have negative dielectric constant anisotropy, and rotate horizontally relative to a substrate plane in a direction of the line-symmetry with respect to the center line when the voltage is applied to the electrodes of the neighboring pixels.
Abstract:
A black matrix substrate includes a black dielectric layer formed on a transparent substrate, a first insulating layer formed on the black dielectric layer, a first conductive layer formed on the first insulating layer and including a first conductive pattern, a second insulating layer formed on the first conductive pattern, an oxide semiconductor layer formed on the second insulating layer, a second conductive layer formed on the oxide semiconductor layer and the second insulating layer, the second conductive layer including a second conductive pattern, a transparent resin layer formed on the second conductive pattern, and a light-absorbing layer formed on the transparent resin layer. The black dielectric layer includes carbon and covers the first and second conductive patterns in a plan view. The light-absorbing layer includes carbon and covers the first and second conductive patterns in a plan view.
Abstract:
A display device including a display function layer between first and second substrates, respectively, a black matrix having an effective display region and a frame region, a first antenna unit for touch sensing signal, a second antenna unit for power signal, first and second conductive lines perpendicularly to one another, first active elements formed in the frame region, a third antenna unit for touch sensing signal, a fourth antenna unit for power signal, second active elements for driving the display function layer, and third and fourth conductive lines formed perpendicularly to one another. In a plan view from the first substrate toward the second substrate, the first and third antenna units overlap for transmitting or receiving a touch sensing signal, with a positional accuracy within ±3 μm, and the second and fourth antenna units overlap for receiving a power signal, with a positional accuracy within ±3 μm.