摘要:
The present invention achieves data relocation in accordance with a user's policies, in an environment where a plurality of storage devices coexist. The volumes belonging to storage devices A-D are managed virtually integrally. A host recognizes a plurality of storage devices A-D as a single virtual storage device. The user is able to group arbitrarily each volume belonging to the storage system, as a plurality of storage layers 1-3. For example, storage layer 1 can be defined as a high-reliability layer, storage layer 2, as a low-cost layer, and storage layer 3, as an archive layer. Each storage layer is constituted by a group of volumes corresponding to respective policies (high reliability, low cost, archiving). The user designates volumes V1 and V2 to be moved, in group units, and indicates a storage layer forming a movement destination, whereby the data is relocated.
摘要:
The present invention achieves data relocation in accordance with a user's policies, in an environment where a plurality of storage devices coexist. The volumes belonging to storage devices A-D are managed virtually integrally. A host recognizes a plurality of storage devices A-D as a single virtual storage device. The user is able to group arbitrarily each volume belonging to the storage system, as a plurality of storage layers 1-3. For example, storage layer 1 can be defined as a high-reliability layer, storage layer 2, as a low-cost layer, and storage layer 3, as an archive layer. Each storage layer is constituted by a group of volumes corresponding to respective policies (high reliability, low cost, archiving). The user designates volumes V1 and V2 to be moved, in group units, and indicates a storage layer forming a movement destination, whereby the data is relocated.
摘要:
The present invention achieves data relocation in accordance with a user's policies, in an environment where a plurality of storage devices coexist. The volumes belonging to storage devices A-D are managed virtually integrally. A host recognizes a plurality of storage devices A-D as a single virtual storage device. The user is able to group arbitrarily each volume belonging to the storage system, as a plurality of storage layers 1-3. For example, storage layer 1 can be defined as a high-reliability layer, storage layer 2, as a low-cost layer, and storage layer 3, as an archive layer. Each storage layer is constituted by a group of volumes corresponding to respective policies (high reliability, low cost, archiving). The user designates volumes V1 and V2 to be moved, in group units, and indicates a storage layer forming a movement destination, whereby the data is relocated.
摘要:
The present invention achieves data relocation in accordance with a user's policies, in an environment where a plurality of storage devices coexist. The volumes belonging to storage devices A-D are managed virtually integrally. A host recognizes a plurality of storage devices A-D as a single virtual storage device. The user is able to group arbitrarily each volume belonging to the storage system, as a plurality of storage layers 1-3. For example, storage layer 1 can be defined as a high-reliability layer, storage layer 2, as a low-cost layer, and storage layer 3, as an archive layer. Each storage layer is constituted by a group of volumes corresponding to respective policies (high reliability, low cost, archiving). The user designates volumes V1 and V2 to be moved, in group units, and indicates a storage layer forming a movement destination, whereby the data is relocated.
摘要:
The present invention achieves data relocation in accordance with a user's policies, in an environment where a plurality of storage devices coexist. The volumes belonging to storage devices A-D are managed virtually integrally. A host recognizes a plurality of storage devices A-D as a single virtual storage device. The user is able to group arbitrarily each volume belonging to the storage system, as a plurality of storage layers 1-3. For example, storage layer 1 can be defined as a high-reliability layer, storage layer 2, as a low-cost layer, and storage layer 3, as an archive layer. Each storage layer is constituted by a group of volumes corresponding to respective policies (high reliability, low cost, archiving). The user designates volumes V1 and V2 to be moved, in group units, and indicates a storage layer forming a movement destination, whereby the data is relocated.
摘要:
The present invention achieves data relocation in accordance with a user's policies, in an environment where a plurality of storage devices coexist. The volumes belonging to storage devices A-D are managed virtually integrally. A host recognizes a plurality of storage devices A-D as a single virtual storage device. The user is able to group arbitrarily each volume belonging to the storage system, as a plurality of storage layers 1-3. For example, storage layer 1 can be defined as a high-reliability layer, storage layer 2, as a low-cost layer, and storage layer 3, as an archive layer. Each storage layer is constituted by a group of volumes corresponding to respective policies (high reliability, low cost, archiving). The user designates volumes V1 and V2 to be moved, in group units, and indicates a storage layer forming a movement destination, whereby the data is relocated.
摘要:
Provided is an inter-volume migration system that allows selection of a relocation-destination volume in consideration of a volume cost. The inter-volume migration system includes a storage subsystem having one or more volumes, an inter-volume relocation instruction module that relocates a data area from a relocation-source volume to a relocation-destination volume, a cost calculation module that calculates a cost value of a volume, and a volume selection module that selects a candidate for the relocation-destination volume based on the cost value of the volume calculated by the cost calculation module and constraints imposed on the relocation-destination volume.
摘要:
Provided is an inter-volume migration system that allows selection of a relocation-destination volume in consideration of a volume cost. The inter-volume migration system includes a storage subsystem having one or more volumes, an inter-volume relocation instruction module that relocates a data area from a relocation-source volume to a relocation-destination volume, a cost calculation module that calculates a cost value of a volume, and a volume selection module that selects a candidate for the relocation-destination volume based on the cost value of the volume calculated by the cost calculation module and constraints imposed on the relocation-destination volume.
摘要:
Provided are a relocation system and a relocation method capable of relocating a virtual volume that is formed based on thin provisioning while ensuring security against exhaustion of pools. A database stores attribute information for pools and virtual volumes for thin provisioning that exist in a storage device as well as parameters for predicting time period till exhaustion of the pools. When a virtual volume is to be relocated between a plurality of pools, a relocation control section predicts time periods till exhaustion of the pools before and after relocation based on information in the database and determines the relocation is possible or not based on the result of prediction or determines an appropriate relocation plan. This enables control of relocation of virtual volumes.
摘要:
Provided are a relocation system and a relocation method capable of relocating a virtual volume that is formed based on thin provisioning while ensuring security against exhaustion of pools. A database stores attribute information for pools and virtual volumes for thin provisioning that exist in a storage device as well as parameters for predicting time period till exhaustion of the pools. When a virtual volume is to be relocated between a plurality of pools, a relocation control section predicts time periods till exhaustion of the pools before and after relocation based on information in the database and determines the relocation is possible or not based on the result of prediction or determines an appropriate relocation plan. This enables control of relocation of virtual volumes.