摘要:
A method reduces time-varying polarization crosstalk due to XPolM by transmitting multi-dimensional orthogonal constellations. Three variants of crosstalk-free constellations are provided: Grassmann constellations, unitary constellations, and rotation codes. The method uses the Grassmann constellations and the unitary constellations to deal with fiber nonlinearity by applying as a polarization-time coding. The rotation codes exploit a fiber channel characteristic to improve performance and to reduce computational complexity. The underlying orthogonality behind those constellations enables the receiver to decode it as if there is no polarization crosstalk. Moreover, the required computational complexity at the receiver is significantly reduced because neither crosstalk cancellers nor channel estimators are needed.
摘要:
A method reduces time-varying polarization crosstalk due to XPolM by transmitting multi-dimensional orthogonal constellations. Three variants of crosstalk-free constellations are provided: Grassmann constellations, unitary constellations, and rotation codes. The method uses the Grassmann constellations and the unitary constellations to deal with fiber nonlinearity by applying as a polarization-time coding. The rotation codes exploit a fiber channel characteristic to improve performance and to reduce computational complexity. The underlying orthogonality behind those constellations enables the receiver to decode it as if there is no polarization crosstalk. Moreover, the required computational complexity at the receiver is significantly reduced because neither crosstalk cancellers nor channel estimators are needed.
摘要:
This invention provides a method for jointly optimizing network coding, channel coding, and signal constellations in non-coherent wireless multiple-input multiple-output (MIMO) wireless relay networks for the case when transceivers cannot obtain any knowledge of channel state information (CSI) due to high-speed mobility of the transceivers. In the relay networks, two terminal transceivers simultaneously transmit data to an intermediate relaying transceiver, which in turn broadcasts mixed data using physical-layer network coding to both terminals. The embodiments of this invention exploit different blind space-time trellis-coded modulations (ST-TCM) for each user, whose codebook is jointly generated over a Grassmannian manifold. The method is provided by exponential mapping with affine-lattice convolution for joint optimization of channel coding, modulations, and network coding. The method is designed for fast fading channels with and without interleaving. The method significantly improves performance in non-coherent bidirectional relaying MIMO networks.
摘要:
This invention provides a method for jointly optimizing network coding, channel coding, and signal constellations in non-coherent wireless multiple-input multiple-output (MIMO) wireless relay networks for the case when transceivers cannot obtain any knowledge of channel state information (CSI) due to high-speed mobility of the transceivers. In the relay networks, two terminal transceivers simultaneously transmit data to an intermediate relaying transceiver, which in turn broadcasts mixed data using physical-layer network coding to both terminals. The embodiments of this invention exploit different blind space-time trellis-coded modulations (ST-TCM) for each user, whose codebook is jointly generated over a Grassmannian manifold. The method is provided by exponential mapping with affine-lattice convolution for joint optimization of channel coding, modulations, and network coding. The method is designed for fast fading channels with and without interleaving. The method significantly improves performance in non-coherent bidirectional relaying MIMO networks.
摘要:
A method estimates a wireless channel at a receiver. The signal is transmitted using narrowband orthogonal frequency division demultiplexing (OFDM) and frequency subcarriers, and the signal includes a set of data tones and a set of pilot tones. The channel and pilot tone interference are estimated based on all the pilot tones extracted from the signal and a channel model. The set of data are equalized based on the channel estimate. Data interference is detected according to the pilot interference and the equalized data tones. Subcarrier interference-to-noise ratios are determined based on the data interference. Signal strengths of the data tones are determined based on the equalized data tones, log-likelihood ratios of bits represented by the data tones are determined based on the subcarrier interference-to-noise ratios and the signal strength of the data tones.
摘要:
A transmitter encodes an input bitstream using space-time trellis coding (STTC). The encoder includes a serial to parallel convertor to produce a first and second output bitstreams. First and second three bit shift registers are connected to produce first and second output bitstreams. A multiplier applies a code generating weight to each bit of the shift registers to encode the bitstreams. A first switch is connected between a last bit of the first shift register and a first bit of the second shift register. A second switch is connected between the second output and the first bit of the second shift register. The first set of encoded bit streams and the second set of encoded bitstreams are combined and mapped to a frequency domain.
摘要:
Beams are used to communicate in a wireless network including mobile and stationary receivers. The network operates according to the IEEE 802.11p in wireless access to vehicular environments (WAVE). A direction from the mobile transceiver to the stationary receiver is predicted using geographic information available to the mobile transceiver. A set of signals are received in the mobile transceiver from the stationary transceiver, wherein the signals are received by an array of antennas, and wherein the signals are received using a set of beams, and wherein each beam is approximately directed at the stationary receiver. A signal-to-noise ratio (SNR) is measured for each beam, and the beam with an optimal SNR is selected as an optimal beam for communicating data between the mobile transceiver and the stationary transceiver.
摘要:
A method and an optical receiver compensates for an error in a phase of an optical signal in a receiver. The signal includes blocks of symbols in a sequence. Each block is decoded based on a partially phase compensated symbols, and an average phase error for the block is estimated. Forward phase compensation and backward phase compensation is performed on the block based on the average phase error, and the decoding, estimating, performing is iterated until a termination condition is satisfied to produce a phase compensated block.
摘要:
The embodiments of the invention provide an adaptive method for base station cooperation in a wireless network. In a multi-user communications network that includes base stations, and in which each base station is associated with a cell, and in which each cell includes one or more mobile stations, each base station determines pre-coding matrices for full-cooperation, semi-cooperation and non-cooperation. Each base stations also determines a sum rate SRfull for full-cooperation, a sum rate SRsemi for semi-cooperation, and a sum rate SRnon for non-cooperation. Then, each base station selects the pre-coding for full-cooperation, the pre-coding matrices for semi cooperation, or the pre-coding matrices for non cooperation. Each base station transmits signals according to the selected pre-coding matrices.
摘要:
Channel state information in a closed-loop, multiple-input, multiple-output wireless networks is fed back from each mobile station to a base station by first determining a transmit covariance matrix R, and applying a singular value decomposition (SVD) R=UΣVH, where U, V are left and right singular vector matrices, Σ is a diagonal matrix with singular values. The matrix V includes column vectors V. A beamforming vector vmax=[1 exp(jΦ)exp(j2Φ) . . . exp(jΦ)]/√{square root over (N)}] is approximated by the column vector V having a maximum magnitude, where Φ is a real number. Then, only the angle Φ is fed back using a phase modulation mapping of the components exp(jΦ) onto the associated subcarrier.