摘要:
A magnetic resonance imaging apparatus according to an embodiment includes sequence control circuitry and processing circuitry. The sequence control circuitry performs first data acquisition in a full k-space and performs a plurality of second data acquisition in partial k-spaces, each of the partial k-spaces being smaller than the entirety of the full k-space. The processing circuitry generates an image, based on data acquired from the first data acquisition and a plurality of pieces of data acquired from the plurality of second data acquisition.
摘要:
A magnetic resonance imaging apparatus includes processing circuitry. The processing circuitry performs first imaging to acquire multiple magnetic resonance signals that are used to derive a quantitative value of tissue. The processing circuitry derives a quantitative value of tissue on the basis of the multiple magnetic resonance signals. The processing circuitry displays, on a display, an estimated image obtained by estimating, through a calculation, an image to be obtained by performing second imaging different from the first imaging on the basis of the derived quantitative value of tissue. The processing circuitry acquires an image by performing the second imaging in which an imaging parameter corresponding to the estimated image is set.
摘要:
According to at least one of embodiments, a magnetic resonance imaging apparatus includes a superconducting magnet configured to generate a static magnetic field; a cryocooler configured to cool down the superconducting magnet in a refrigeration cycle in which mechanical fluctuation with a predetermined period is included; a sequence controller configured to acquire magnetic resonance signals for generating a diagnostic image from an object; and processing circuitry configured to correct phase fluctuation included in the magnetic resonance signals for generating a diagnostic image acquired by the sequence controller, the phase fluctuation being generated by periodic fluctuation of the static magnetic field caused by mechanical fluctuation of the cryocooler.
摘要:
A magnetic resonance diagnostic apparatus includes a derivation unit to derive an apparent diffusion coefficient regarding a pixel position for each pixel position included in a region of interest in at least two original images obtained by imaging a same imaging region of a same subject using at least two b-factors that are different from each other, respectively, based on pixel values of each of at least two original images regarding the pixel positions, and a first estimation unit to estimate a pixel value obtained by using a b-factor that is different from the at least two b-factors, regarding each pixel position included in the region of interest, based on the apparent diffusion coefficient derived for each pixel position.
摘要:
An image processing apparatus according to an embodiment includes processing circuitry. The processing circuitry is configured to detect a region of body fluid flowing in a subject from time-series images acquired by scanning an imaging area including a tagged region to which a tagging pulse is applied and imaging the imaging area; generate a plurality of display images in which the detected body fluid region is displayed in a display mode determined based on a positional relation between the body fluid region and a boundary line, the boundary line determined based on the tagged region; and output time-series display images including the plurality of display images to be displayed on a display.
摘要:
According to one embodiment, a magnetic resonance imaging apparatus includes control circuitry. The control circuitry executes, by a single protocol, acquisition of a distribution of a T1 relaxation time with a first slice as a target, and acquisition of a different kind from the distribution of the T1 relaxation time with a second slice as a target which neither overlaps nor crosses a region of interest of the first slice.
摘要:
According to a Magnetic Resonance Imaging (MRI) apparatus, a scanning-parameter limit calculating unit creates examination information that represents scanning conditions for collection of magnetic resonance signal data based on scanning parameters set by an operator; a scanning-condition edit/scan positioning unit creates a time chart that indicates the type and a sequential execution order of an event to be executed when collecting magnetic resonance signal data based on the examination information created by the scanning-parameter limit calculating unit, and causes a time-chart display unit to display the created time chart.
摘要:
A medical image diagnostic apparatus has an imaging unit that images volume data of a region-of-interest of an object, an extracting unit that extracts a characteristic point from the volume data; and, a generating unit that generates an observation sectional image from the volume data using the characteristic point and correlation parameters.
摘要:
According to at least one of embodiments, a magnetic resonance imaging apparatus includes a superconducting magnet configured to generate a static magnetic field; a cryocooler configured to cool down the superconducting magnet in a refrigeration cycle in which mechanical fluctuation with a predetermined period is included; a sequence controller configured to acquire magnetic resonance signals for generating a diagnostic image from an object; and processing circuitry configured to correct phase fluctuation included in the magnetic resonance signals for generating a diagnostic image acquired by the sequence controller, the phase fluctuation being generated by periodic fluctuation of the static magnetic field caused by mechanical fluctuation of the cryocooler.
摘要:
A magnetic resonance imaging apparatus includes: a sequence controlling unit that, by controlling an execution of a pulse sequence, acquires magnetic resonance (MR) signals corresponding to a plurality of channels in the pulse sequence executed as a series, the MR signals being configured to be arranged into a first region of a k-space at first intervals and into a second region larger than the first region at second intervals larger than the first intervals; an arranging unit that arranges the MR signals corresponding to the channels into the k-space as k-space data; and an image generating unit that generates first-interval k-space data corresponding to the channels based on the second-interval k-space data acquired by executing the pulse sequence and generates a magnetic resonance image based on the generated first-interval k-space data, the first-interval k-space data acquired by executing the pulse sequence, and sensitivity distributions corresponding to the channels.