摘要:
A method of manufacturing provides a vertical transistor particularly suitable for high density integration and which includes potentially independent gate structures on opposite sides of a semiconductor pillar formed by etching or epitaxial growth in a trench. The gate structure is surrounded by insulating material which is selectively etchable to isolation material surrounding the transistor. A contact is made to the lower end of the pillar (e.g. the transistor drain) by selectively etching the isolation material selective to the insulating material. The upper end of the pillar is covered by a cap and sidewalls of selectively etchable materials so that gate and source connection openings can also be made by selective etching with good registration tolerance. A dimension of the pillar in a direction parallel to the chip surface is defined by a distance between isolation regions and selective etching and height of the pillar is defined by thickness of a sacrificial layer.
摘要:
A vertical transistor particularly suitable for high density integration includes potentially independent gate structures on opposite sides of a semiconductor pillar formed by etching or epitaxial growth in a trench. The gate structure is surrounded by insulating material which is selectively etchable to isolation material surrounding the transistor. A contact is made to the lower end of the pillar (e.g. the transistor drain) by selectively etching the isolation material selective to the insulating material. The upper end of the pillar is covered by a cap and sidewalls of selectively etchable materials so that gate and source connection openings can also be made by selective etching with good registration tolerance. A dimension of the pillar in a direction parallel to the chip surface is defined by a distance between isolation regions and selective etching and height of the pillar is defined by thickness of a sacrificial layer.
摘要:
Methods are provided that use disposable and permanent films to dope underlying layers through diffusion. Additionally, methods are provided that use disposable films during implantation doping and that provide a surface from which to dope underlying materials. Some of these disposable films can be created from a traditionally non-disposable film and made disposable. In this manner, solvents may be used that do not etch underlying layers of silicon-based materials. Preferably, deep implantation is performed to form source/drain regions, then an anneal step is performed to activate the dopants. A conformal layer is deposited and implanted with dopants. One or more anneal steps are performed to create very shallow extensions in the source/drain regions.
摘要:
Methods are provided that use disposable and permanent films to dope underlying layers through diffusion. Additionally, methods are provided that use disposable films during implantation doping and that provide a surface from which to dope underlying materials. Some of these disposable films can be created from a traditionally non-disposable film and made disposable. In this manner, solvents may be used that do not etch underlying layers of silicon-based materials. Preferably, deep implantation is performed to form source/drain regions, then an anneal step is performed to activate the dopants. A conformal layer is deposited and implanted with dopants. One or more anneal steps are performed to create very shallow extensions in the source/drain regions.
摘要:
Disclosed is a method that forms a conductive layer on a substrate and patterns sacrificial structures above the conductive layer. Next, the invention forms sidewall spacers adjacent the sacrificial structures using a spacer material capable of undergoing dimensional change, after which the invention removes the sacrificial structures in processing that leaves the sidewall spacers in place. The invention then protects selected ones of the sidewall spacers using a sacrificial mask and leaves the other ones of the sidewall spacers unprotected. This allows the invention to selectively expose the unprotected sidewall spacers to processing that changes the size of the unprotected sidewall spacers. This causes the unprotected sidewall spacers have a different size than protected sidewall spacers. Then, the invention removes the sacrificial mask and patterns the conductive layer using the sidewall spacers as a gate conductor mask to create differently sized gate conductors on the substrate. Following this, the invention removes the sidewall spacers and forms the source, drain, and channel regions adjacent the gate conductors.
摘要:
A computer display system which displays an image and a magnified portion of the image. The magnified portion of the image is selected un,der control of a pointing device connected to the computer. A method is described for changing the characteristics of the magnified portion. A configuration utility which creates the magnified portion of the display includes a menu of display properties for the magnified portion. The properties are selected from the display menu, and each refresh of the area within the magnified portion of the image is refreshed with the selected properties. In a text/browser application, the background color, text color, text style and size may be selected differently than the remaining portion of the image displayed on the computer display.