摘要:
This magnetic recording medium is characterized in that in the magnetic recording medium having a magnetic layer on a non-magnetic substrate by intercalating at least an under layer, the proportion of functional groups per 100 carbon atoms in a diamond-like carbon protective layer mainly composed of carbon for protecting the magnetic layer exceeds 20%. The bonding force between the protective layer and the lubricating layer of the magnetic recording medium is increased so that under high speed rotation, a decrease in the lubricating layer is not caused so as to provide a magnetic recording apparatus having high reliability.
摘要:
This magnetic recording medium is characterized in that in the magnetic recording medium having a magnetic layer on a non-magnetic substrate by intercalating at least an under layer, the proportion of functional groups per 100 carbon atoms in a diamond-like carbon protective layer mainly composed of carbon for protecting the magnetic layer exceeds 20%. The bonding force between the protective layer and the lubricating layer of the magnetic recording medium is increased so that under high speed rotation, a decrease in the lubricating layer is not caused so as to provide a magnetic recording apparatus having high reliability.
摘要:
A method for manufacturing a magnetic recording medium includes forming a first protective layer of first material over a magnetic film provided on a substrate. The first protective layer has a thickness of about 0.2 nm to about 2 nm. A second protective layer of second material is formed over the first protective layer by driving ions of the second material into the first protective layer. The first protective layer is configured to prevent the ions of the second material from penetrating into the magnetic film.
摘要:
This magnetic recording medium is characterized in that in the magnetic recording medium having a magnetic film on a non-magnetic substrate by intercalating at least an under layer, the proportion of functional groups per 100 carbon atoms in a diamond-like carbon protective coating mainly composed of carbon for protecting the magnetic film exceeds 20%. The bonding force between the protective coating layer and the lubricating layer of the magnetic recording medium is increased so that under high speed rotation, a decrease in the lubricating layer is not caused so as to provide a magnetic recording apparatus having high reliability.
摘要:
This magnetic recording medium is characterized in that in the magnetic recording medium having a magnetic film on a non-magnetic substrate by intercalating at least an under layer, the proportion of functional groups per 100 carbon atoms in a diamond-like carbon protective coating mainly composed of carbon for protecting the magnetic film exceeds 20%. The bonding force between the protective coating layer and the lubricating layer of the magnetic recording medium is increased so that under high speed rotation, a decrease in the lubricating layer is not caused so as to provide a magnetic recording apparatus having high reliability.
摘要:
A magnetic recording medium is provided in which film thickness of the DLC layer is 5 nm or less. A tangential force of the magnetic head is small. The magnetic recording medium has excellent durability to sliding property. A magnetic storage device can be realized that is capable of stable floating of the magnetic head at 10 nm or less. The magnetic recording medium has a primary coat layer, a magnetic layer, and an overcoat layer on a substrate, wherein the overcoat layer is composed of a DLC film, and in an area in which depth from the surface of the DLC film is 13 Å or less, there is formed a CN bond.
摘要:
Embodiments of the invention provide a magnetic recording medium superior in terms magnetic head flying performance, abrasion resistant reliability and corrosion resistance and a method for manufacturing the same. In one embodiment, method for manufacturing a magnetic recording medium, comprising forming at least an adhesion layer, a soft magnetic layer, a granular magnetic film and a diamond-like carbon (DLC) protective film on a nonmagnetic substrate. While the DLC protective film layer to protect the granular magnetic layer of the magnetic recording medium is formed, hydrocarbon gas is mixed with hydrogen gas and a bias voltage is applied to the substrate.
摘要:
A magnetic recording medium with a granular magnetic recording layer excellent in corrosion resistance is provided. In one embodiment, after formation of, on a non-magnetic substrate, an NiTa adhesion layer, a soft magnetic layer, a Ta intermediate layer, an Ru intermediate layer, and a Co alloy granular magnetic recording layer, hydrogen (H2) plasma processing is applied to the surface of the Co alloy granular magnetic recording layer. Then, a DLC protective film layer is formed and a lubricant layer is coated.
摘要:
A magnetic recording medium with a granular magnetic recording layer excellent in corrosion resistance is provided. In one embodiment, after formation of, on a non-magnetic substrate, an NiTa adhesion layer, a soft magnetic layer, a Ta intermediate layer, an Ru intermediate layer, and a Co alloy granular magnetic recording layer, hydrogen (H2) plasma processing is applied to the surface of the Co alloy granular magnetic recording layer. Then, a DLC protective film layer is formed and a lubricant layer is coated.
摘要:
Embodiments of the invention provide a magnetic recording medium superior in terms magnetic head flying performance, abrasion resistant reliability and corrosion resistance and a method for manufacturing the same. In one embodiment, method for manufacturing a magnetic recording medium, comprising forming at least an adhesion layer, a soft magnetic layer, a granular magnetic film and a diamond-like carbon (DLC) protective film on a nonmagnetic substrate. While the DLC protective film layer to protect the granular magnetic layer of the magnetic recording medium is formed, hydrocarbon gas is mixed with hydrogen gas and a bias voltage is applied to the substrate.