摘要:
A magnetic absolute encoder includes: a board-holding assembly mounted to a motor case assembly side; and a flexible printed wiring board which is held, by the board-holding assembly, in the shape of a loop surrounding multipolar and bipolar ring magnets. On the flexible printed wiring board, multipolar-side hall elements and bipolar-side hall elements are mounted and a wiring pattern relating to the hall elements are printed. The assembling work and wiring work of the magnetic absolute encoder provided with a multipolar magnetic encoder and a bipolar magnetic encoder can be performed simply in a short time.
摘要:
A magnetic absolute encoder includes: a board-holding assembly mounted to a motor case assembly side; and a flexible printed wiring board which is held, by the board-holding assembly, in the shape of a loop surrounding multipolar and bipolar ring magnets. On the flexible printed wiring board, multipolar-side hall elements and bipolar-side hall elements are mounted and a wiring pattern relating to the hall elements are printed. The assembling work and wiring work of the magnetic absolute encoder provided with a multipolar magnetic encoder and a bipolar magnetic encoder can be performed simply in a short time.
摘要:
First to fourth magnetic detection units (22-25) are arranged in opposition to a multipole magnetized surface (21a) of a multipole magnet (21) of a magnetic encoder (17). The first and second magnetic detection units (22, 23) are placed on positions separated from each other by 180 degrees on the periphery of the center of the multipole magnet and output an A-phase signal and a B-phase signal. The third and fourth magnetic detection units (24, 25) are placed on positions separated from each other by nearly 180 degrees on the periphery of the center of the multipole magnet and output an A-phase reverse signal and a B-phase reverse signal. Detection signals of the same phase are synthesized and averaged, and consequently a detection error generated by an outer magnetic flux extending in the diameter direction of the multipole magnet can be removed. The signal obtained by synthesizing the detection signals of the same phase and averaging the same and the reverse signal of a signal obtained by synthesizing reverse signals of the reverse phase and averaging the same are synthesized and averaged, and consequently the detection error generated by the outer magnetic flux radially extending in one direction along the radius direction of the multipole magnet can be removed.
摘要:
First to fourth magnetic detection units (22-25) are arranged in opposition to a multipole magnetized surface (21a) of a multipole magnet (21) of a magnetic encoder (17). The first and second magnetic detection units (22, 23) are placed on positions separated from each other by 180 degrees on the periphery of the center of the multipole magnet and output an A-phase signal and a B-phase signal. The third and fourth magnetic detection units (24, 25) are placed on positions separated from each other by nearly 180 degrees on the periphery of the center of the multipole magnet and output an A-phase reverse signal and a B-phase reverse signal. Detection signals of the same phase are synthesized and averaged, and consequently a detection error generated by an outer magnetic flux extending in the diameter direction of the multipole magnet can be removed. The signal obtained by synthesizing the detection signals of the same phase and averaging the same and the reverse signal of a signal obtained by synthesizing reverse signals of the reverse phase and averaging the same are synthesized and averaged, and consequently the detection error generated by the outer magnetic flux radially extending in one direction along the radius direction of the multipole magnet can be removed.
摘要:
A DC motor of a galvanometer-type scanner has four poles, and compared to a conventional DC motor with a bipolar construction, the armature inductance L can be reduced to half or less for a case where the external diameter of the rotor and the induced voltage constant KE are the same. Since KE/L, which is the index for the rise of torque of the motor, is increased by a factor of two or more, the responsiveness of the motor can be improved without increasing the exciting current of the winding. Accordingly, it is possible to provide a galvanometer-type scanner that can set minute angles of around one degree within several hundred microseconds.
摘要:
An actuator has a housing, a motor and a wave gear reduction drive arranged axially in the housing, and a rotational shaft extending through the centers of these portions. The rotational shaft is supported at its rear side by a first bearing and at its front side by a boss of a flexible external gear of the wave gear reduction drive via a second bearing. The rotational shaft is formed integrally on its outer peripheral portion with a cam plate of a wave generator of the wave gear reduction drive. The actuator thus configured does not require a coupling mechanism between the motor and the wave gear reduction drive and needs fewer bearings to support the rotational shaft, making it possible to reduce the axial length of the actuator.
摘要:
Before detecting a mechanical angular absolute position θabs of a rotating shaft (4) within one turn using a two-pole absolute value encoder (2) and a multi-pole absolute value encoder (3) having Pp (Pp: an integer of 3 or more) pole pairs, the rotating shaft (4) is rotated to measure a temporary absolute value θelt of the multi-pole absolute value encoder (3) in relation to each absolute value θt of the two-pole absolute value encoder (2), and a temporary pole-pair number (Nx) for a multi-pole magnet is assigned to each absolute value θt. In actual detecting, an absolute value θti of the two-pole absolute value encoder and an absolute value θelr of the multi-pole absolute value encoder are measured, the temporary pole-pair number (Nx) assigned to the absolute value θti is corrected on the basis of an absolute value θelti of the multi-pole absolute value encoder assigned to the absolute value θti and the measured absolute value θelr, thus calculating a pole-pair number (Nr). The absolute position θabs is calculated using an expression of (Nr×θelp+θelr)/Pp with a mechanical angle θelp corresponding to an electrical angle of one period of an output signal of the multi-pole absolute value encoder.
摘要:
A motor encoder is mounted on a motor shaft of a geared motor 1, and the origin position is detected by using a Z-phase signal. An absolute value encoder with a precision that allows the number of motor rotations to be determined is mounted on an output shaft 4 of a reduction gear, and the absolute rotational position thereof is detected. When the first Z-phase signal generated in conjunction with the rotation of the motor shaft 2a is obtained at startup and at other times, the mechanical starting point at which the motor shaft and output shaft are both positioned at the origin can be calculated based on the absolute rotational position of the reduction-gear output shaft obtained from the output-side absolute value encoder. Since the mechanical starting point is obtained by rotating the motor shaft a single rotation at most, the time required to calculate the mechanical starting point is short in comparison with conventional examples, and extraneous rotational movements can be avoided.
摘要:
Magnetic poles are provided continuously with a pitch .lambda. on the peripheral portion of a drum rotated in accordance with a movement of a moving body. A magnetic sensor is provided in opposition to these poles. The sensor is formed of two magnetoresistive element pairs which are spaced from each other at .lambda./6, and the two elements in each pair are arranged in positions spaced from each other at .lambda./2. The two elements in each pair are connected in series to form a bridge circuit. The signals obtained from the nodes of the series-connected elements in the two element pairs are differentially amplified so that third harmonic wave components are eliminated, and a signal having no distortion and representative of the position or speed of the moving body can be obtained.
摘要:
A device for detecting a load torque using angle detectors fitted with a certain spacing on a shaft which is rotated by a drive source and on the basis of a relative angular difference of angles detected by the angle detectors. The device includes two rotary drums or discs fitted with a certain spacing on the drive side and load side of the shaft, with a plurality of magnetic poles for generating magnetic signals being formed on the surface thereof, and a magnetic sensor disposed to confront the surface of the rotary drums or discs, with magnetic resistance effect elements which vary in internal resistance in response to the magnetism of the magnetic poles being provided thereon. The amount of torsion created by the load on the load side of the rotary shaft is measured as a phase difference of outputs of the magnetic sensor, and the torque is detected in terms of the angular difference between the magnetic drums or discs. The device is operative to detect a torque in both storage and rotation, and capable of detection within a period of magnetic signal, whereby high-accuracy, high-resolution torque detection is made possible.