Abstract:
A hydraulic excavator includes: a revolving upperstructure; a working device attached to the revolving upperstructure; an operator's cab which has a rear window and is disposed in a front position of the revolving upperstructure; and an engine room which is disposed in a rear position adjacent to the operator's cab and has a ceiling part made of a cover member. A part of the cover member located near the operator's cab is made of an inclined surface part having a shape whose height gradually increases toward the rear of a vehicle body with the vicinity of a lower end part of the rear window as a start point during a predetermined distance immediately after the operator's cab. The height of the start point of the inclined surface part may be set equal to or lower than the height of the lower end part of the rear window.
Abstract:
A cyclophosphazene compound of the formula (I), and lubricants and magnetic disks using the compound wherein n is 2, 3 or 4, m is an integer of 1 to 12, R is C1-4 fluoroalkyl and Rf is —CF2O(CF2CF2O)x(CF2O)yCF2— or —CF2CF2O(CF2CF2CF2O)zCF2CF2— in which x, y and z are each 0 or a positive real number to give a number average molecular weight of 500 to 4000 to a fluoropolyether of the formula HOCH2—Rf—CH2OH including said Rf, the fluoropolyether having a molecular weight distribution (PD) of 1.0 to 1.5.
Abstract:
A compound of the formula (1), lubricant containing the compound and magnetic disk C6H4—(O—Z—R—X)2 (1) wherein Z is —CH2CH2O— or —CH2CH(OH)CH2O—, R is —CH2CF2CF2CF2O(CF2CF2CF2CF2O)nCF2CF2CF2CH2—, n is a real number of 0 to 20, X is —OH, —O(CH2)mOH, —OCH2CH(OH)CH2OH, —OCH2CH(OH)CH2O—C6H5 or —OCH2CH(OH)CH2O—C6H4—OCH3, m is an integer of 1 to 6.
Abstract:
An insert with a light weight per unit length, which is securely separable to obtain insert pieces, a method for producing such an insert, and a method for producing long products using such an insert. The insert includes a large number of insert pieces and joining parts formed by the application of a rolling operation and a tension force, and has a ladder-shaped configuration. Slits are defined between adjacent insert pieces, and include first slits, each having a large width in a longitudinal direction of the insert, and second slits, each having a width smaller than that of the first slits so as to be alternately formed. The joining parts include first joining parts, each having a small width in a width direction of the insert, and second joining parts, each having a width larger than that of the first joining parts so as to be alternately formed. The width ratio of the insert pieces, the first slits and the second slits in the longitudinal direction is determined to 100:(65˜104):(24˜53), whereas the width ratio of the first joining parts to the second joining parts in the width direction is determined to 20:(28˜33).
Abstract:
An accelerator pedal apparatus includes a pedal arm rotating around a first rotation axis line and having a contact portion, a return spring and a reaction force adding mechanism including a drive source and a rotation member rotating around a second rotation axis line in a state of being contacted to the contact portion which adds reaction force to return the pedal arm toward the rest position. A first distance from the contact position of the rotation member with the contact portion to the first rotation axis line is longer than a second distance to the second rotation axis line. The rotation member includes a contact section having the contact portion displaced while being contacted so that the contact portion is to be closer to the second rotation axis line when rotating toward the maximum depression position and to be farther from the second rotation axis line when rotating toward the rest position.
Abstract:
The present invention provides a chamber 1 comprising a chamber section 2 having a substrate processing compartment into which a substrate is loaded for a predetermined processing step, and reinforcing members 3 removably mounted on the discrete outer walls of the chamber section. Each of the reinforcing members comprises a plate-like joint member 32 or a rib member 31 which is removably mounted on the corresponding outer wall of the chamber section. The reinforcing member may comprise both the plate-like joint member 32 and rib member 31.
Abstract:
An insert with a light weight per unit length, which is securely separable to obtain insert pieces, a method for producing such an insert, and a method for producing long products using such an insert. The insert includes a large number of insert pieces and joining parts formed by the application of a rolling operation and a tension force, and has a ladder-shaped configuration. Slits are defined between adjacent insert pieces, and include first slits, each having a large width in a longitudinal direction of the insert, and second slits, each having a width smaller than that of the first slits so as to be alternately formed. The joining parts include first joining parts, each having a small width in a width direction of the insert, and second joining parts, each having a width larger than that of the first joining parts so as to be alternately formed. The width ratio of the insert pieces, the first slits and the second slits in the longitudinal direction is determined to 100:(65˜104):(24˜53), whereas the width ratio of the first joining parts to the second joining parts in the width direction is determined to 20:(28˜33).
Abstract:
The present invention provides a chamber 1 comprising a chamber section 2 having a substrate processing compartment into which a substrate is loaded for a predetermined processing step, and reinforcing members 3 removably mounted on the discrete outer walls of the chamber section. Each of the reinforcing members comprises a plate-like joint member 32 or a rib member 31 which is removably mounted on the corresponding outer wall of the chamber section. The reinforcing member may comprise both the plate-like joint member 32 and rib member 31.
Abstract:
A brake pedal apparatus for an automobile, includes: 1) a pedal bracket fixed to a dash panel; 2) a first link rotatably supported about an axis by the pedal bracket in such a configuration as to operate a push rod; 3) a vehicle body portion positioned rearward of the pedal bracket in a vehicular body; 4) a second link rotatably supported about an axis by the pedal bracket; and 5) an engagement portion disposed in the first link, and configured to securely engages with the second link when an external force caused by a collision is applied to the dash panel, followed by operations below: i) the pedal bracket moves rearward of the vehicular body relative to the vehicle body portion, ii) the second link, thereby, contacts the vehicle body portion, and iii) the first link, thereby, moves relative to the second link.