Abstract:
An aluminum alloy brazing sheet having high corrosion resistance is provided, which develops the sacrificial anticorrosion effect in both surfaces of the sheet, which has the brazing function in one of both the surfaces, and which prevents the occurrence of preferential corrosion. A channel forming component for a vehicular heat exchanger is also provided by utilizing the aluminum alloy brazing sheet. An aluminum alloy brazing sheet having high corrosion resistance includes an aluminum alloy core, a filler material clad on one surface of the core, and a sacrificial anode material clad on the other surface of the core, wherein the filler material, the sacrificial anode material, and the core have respective predetermined alloy compositions. A channel forming component for a vehicular heat exchanger is manufactured using the aluminum alloy brazing sheet having high corrosion resistance.
Abstract:
An aluminum alloy heat exchanger for an exhaust gas recirculation system, which is a heat exchanger installed in an exhaust gas recirculation system of an internal combustion engine to cool the exhaust gas comprises a tube provided with a sacrificial anticorrosion material on a side along which the exhaust gas passes, and a fin brazed to the surface side of the sacrificial anticorrosion material of the tube, the fin having a pitting potential higher than the pitting potential of the surface of the sacrificial anticorrosion material of the tube. According to the disclosure, an aluminum alloy heat exchanger for an exhaust gas recirculation system having a long service life with effective function of the sacrificial anticorrosion even under an acidic environment in which an oxide film is weakened as a whole and pitting corrosion is unlikely to occur can be provided.
Abstract:
An aluminum alloy material contains Si: 1.0 mass % to 5.0 mass % and Fe: 0.01 mass % to 2.0 mass % with balance being Al and inevitable impurities, wherein 250 pcs/mm2 or more to 7×105 pcs/mm2 or less of Si-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 μm are present in a cross-section of the aluminum alloy material, while 100 pcs/mm2 to 7×105 pcs/mm2 of Al-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 μm are present in a cross-section of the aluminum alloy material. An aluminum alloy structure is manufactured by bonding two or more members in vacuum or a non-oxidizing atmosphere at temperature at which a ratio of a mass of a liquid phase generated in the aluminum alloy material to a total mass of the aluminum alloy material is 5% or more and 35% or less.
Abstract translation:铝合金材料含有Si:1.0质量%至5.0质量%,Fe:0.01质量%至2.0质量%,余量为Al和不可避免的杂质,其中250个/ mm 2以上至7×105个/ mm 2以下的Si 在铝合金材料的截面中存在等效圆直径为0.5〜5μm的金属间化合物颗粒,而具有当量圆直径的100个/ mm 2至7×105个/ mm 2的Al基金属间化合物颗粒 在铝合金材料的横截面中存在0.5-5μm。 在铝合金材料中产生的液相的质量比与铝合金材料的总质量的比率为5的温度下,在真空或非氧化性气氛中接合两个以上的构件,制造铝合金结构体 %以上35%以下。
Abstract:
An aluminum alloy heat exchanger includes a core material formed of an aluminum alloy comprising Mn of 0.60 to 2.00 mass % and Cu of 1.00 mass % or less, with the balance being Al and inevitable impurities, and a sacrificial anode material formed of an aluminum alloy comprising Zn of 2.50 to 10.00 mass %, with the balance being Al and inevitable impurities. Pitting potential of a sacrificial anode material surface of a tube of the aluminum alloy heat exchanger in a 5% NaCl solution is −800 (mV vs Ag/AgCl) or less, and pitting potential of an aluminum fin of the aluminum alloy heat exchanger in a 5% NaCl solution is less than the pitting potential of the sacrificial anode material surface of the tube of the aluminum alloy heat exchanger in a 5% NaCl solution.
Abstract:
An aluminum alloy material contains Si: 1.0 mass % to 5.0 mass % and Fe: 0.01 mass % to 2.0 mass % with balance being Al and inevitable impurities, wherein 250 pcs/mm2 or more to 7×105 pcs/mm2 or less of Si-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 μm are present in a cross-section of the aluminum alloy material, while 100 pcs/mm2 to 7×105 pcs/mm2 of Al-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 μm are present in a cross-section of the aluminum alloy material. An aluminum alloy structure is manufactured by bonding two or more members in vacuum or a non-oxidizing atmosphere at temperature at which a ratio of a mass of a liquid phase generated in the aluminum alloy material to a total mass of the aluminum alloy material is 5% or more and 35% or less.
Abstract translation:铝合金材料含有Si:1.0质量%至5.0质量%,Fe:0.01质量%至2.0质量%,余量为Al和不可避免的杂质,其中250个/ mm 2以上至7×105个/ mm 2以下的Si 在铝合金材料的截面中存在等效圆直径为0.5〜5μm的金属间化合物颗粒,而具有当量圆直径的100个/ mm 2至7×105个/ mm 2的Al基金属间化合物颗粒 在铝合金材料的横截面中存在0.5-5μm。 在铝合金材料中产生的液相的质量比与铝合金材料的总质量的比率为5的温度下,在真空或非氧化性气氛中接合两个以上的构件,制造铝合金结构体 %以上35%以下。
Abstract:
An aluminum alloy heat exchanger for an exhaust gas recirculation system, the heat exchanger obtained by brazing: a tube material comprising a core material comprising 0.05 mass % to 1.50 mass % of Si, 0.05 mass % to 3.00 mass % of Cu, and 0.40 mass % to 2.00 mass % of Mn, and a sacrificial anticorrosion material comprising 2.00 mass % to 6.00 mass % of Zn, clad on an inner side surface of the core material; and a fin material comprising a core material comprising 0.05 mass to 1.50 mass % of Si, and 0.40 mass % to 2.00 mass % of Mn, and a brazing material comprising 3.00 mass % to 13.00 mass % of Si, clad on both surfaces of the core material; the heat exchanger having a ratio of a surface area Sb (mm2) of the fin material to a surface area Sa (mm2) of the sacrificial anticorrosion material of less than 200%.
Abstract:
Provided is a corrosion resistant copper tube which can exhibit a further improved resistance to ant nest corrosion, and which is suitably usable as a heat transfer tube and refrigerant tube in air-conditioning equipment and refrigerating equipment. The copper tube is formed of a copper material comprising a copper alloy consisting of 0.15-0.50% by weight of phosphorus and the balance being copper and impurities, wherein the copper material includes phosphorus oxide particles, such that a number density of particles having a circle equivalent diameter of not less than 0.1 μm among the phosphorus oxide particles is not more than 50000/mm2.
Abstract:
An aluminum alloy heat exchanger includes a core material formed of an aluminum alloy including Mn of 0.60 to 2.00 mass % and Cu of 1.00 mass % or less, with the balance being Al and inevitable impurities, and a sacrificial anode material formed of an aluminum alloy including Zn of 2.50 to 10.00 mass %, with the balance being Al and inevitable impurities. Pitting potential of a sacrificial anode material surface of a tube of the aluminum alloy heat exchanger in a 5% NaCl solution is −800 (mV vs Ag/AgCl) or less, and pitting potential of an aluminum fin of the aluminum alloy heat exchanger in a 5% NaCl solution is equal to or more than the pitting potential of the sacrificial anode material surface of the tube of the aluminum alloy heat exchanger in a 5% NaCl solution.
Abstract:
An aluminum alloy heat exchanger for an exhaust gas recirculation system, obtained by brazing: a tube material comprising at least a core material made of aluminum alloy comprising 0.10 to 1.50% of Si, 0.05 to 3.00% of Cu, and 0.40 to 2.00% of Mn, and a sacrificial anticorrosion material made of aluminum alloy comprising 2.00 to 6.00% of Zn, with a Si content of less than 0.10%, clad on the inner side surface of the core material; and a fin material comprising a core material made of aluminum alloy comprising 0.10 to 1.50% of Si, and 0.40 to 2.00% of Mn, with a Zn content of less than 0.05%, and a brazing material clad on both surfaces of the core material, made of aluminum alloy comprising 3.00 to 13.00% of Si, with a Zn content of less than 0.05%.
Abstract:
Aluminum alloy material containing Si: 1.0 to 5.0 mass % and Fe: 0.01 to 2.0 mass % with balance being Al and inevitable impurities, wherein 250 pcs/mm2 or more to 7×105 pcs/mm2 or less of Si-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 μm are present in a cross-section of the aluminum alloy material, while 100 pcs/mm2 or more to 7×105 pcs/mm2 or less of Al-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 μm are present in a cross-section of the aluminum alloy material. An aluminum alloy structure is manufactured by bonding two or more members in vacuum or a non-oxidizing atmosphere at temperature at which a ratio of a mass of a liquid phase generated in the aluminum alloy material to a total mass of the aluminum alloy material is 5% or more and 35% or less.