Abstract:
The aluminium-alloy brazing sheet fin material having a core material and a brazing material. Before heating for brazing, the fin material has an average degree of cladding of 6 to 16% for each surface, a thickness of 40 to 120 μm and an electrical conductivity of 48 to 54% IACS and the core material has a metallographic structure having a distribution in which a Mn-based compound having an equivalent circular diameter of 0.05 to 0.50 μm is present at an average distance between particles of 0.05 to 0.35 μm. After heating for brazing, the fin material has an electrical conductivity of 40 to 44% IACS and the core material has a metallographic structure having a distribution in which a Mn-based compound having an equivalent circular diameter of 0.50 μm or less is present at an average distance between particles of 0.45 μm or less.
Abstract:
An aluminum alloy brazing sheet for heat exchangers, having a core alloy containing Mn 0.6 to 2.0 mass %, Fe 0.05 to 0.5 mass %, Si 0.4 to 0.9 mass %, and Zn 0.02 to 4.0 mass %, with the balance being Al and unavoidable impurities; and as a skin alloy containing Si 6.0 to 13.0 mass %, Fe 0.05 to 0.80 mass %, and Cu 0.05 to 0.45 mass %, with the balance being Al and unavoidable impurities, wherein a ratio A/B of a number density A of specific precipitates with a particle size 0.1 μm or more but less than 3.0 μm, and a number density B of precipitates with a particle size 3.0 μm or more in the core alloy, satisfies: 50≦A/B≦500, and wherein an average grain size of the core alloy in a longitudinal cross-section of a fin after braze-heating is 100 μm or more; and a method of producing the same.
Abstract:
Provided are: an Al—Mg—Si-based aluminum alloy material including an aluminum alloy including 0.10 to 1.50 mass % (hereinafter, “%”) Si and 0.10 to 2.00% of Mg, in which an oxide coating film mainly containing aluminum is formed on a surface of the aluminum alloy material, a Mg—Si-based crystallized product having an equivalent circle diameter of 0.1 to 5.0 μm is contained at 100 to 150,000 particles/mm2, a Mg—Si-based crystallized product having an equivalent circle diameter of more than 5.0 μm and 10.0 μm or less is contained at 5 particles/mm2 or less, and the oxide coating film includes Si at a maximum concentration of 0.1 to 40.0% and Mg at a maximum concentration of 0.1 to 20.0%; a method for producing the aluminum alloy material; and an aluminum alloy clad material, in which the aluminum alloy material is clad on at least one surface of an aluminum core material.
Abstract:
Provided are an aluminum cladding material having excellent corrosion resistance, a production method therefor, an aluminum cladding material for heat exchangers having excellent corrosion resistance, a production method therefor, an aluminum heat exchanger using said aluminum cladding material for heat exchangers, and a production method therefor. Said aluminum cladding material comprises an aluminum alloy core material and a sacrificial anode material layer clad on at least one surface thereof. The sacrificial anode material layer comprises an aluminum alloy containing 0.10 mass % or more and less than 1.50 mass % Si, 0.10 to 2.00 mass % Mg. Present therein is 100 to 150000 pieces/mm2 of Mg—Si-based crystallized product having a circle-equivalent diameter of 0.1 to 5.0 μm, 7 pieces/mm2 or less of Mg—Si-based crystallized product having a circle-equivalent diameter of more than 5.0 μm and 10.0 μm or less in the sacrificial anode material layer.
Abstract translation:提供具有优异的耐腐蚀性的铝包覆材料及其制造方法,用于具有优异耐腐蚀性的热交换器的铝包层材料及其制造方法,使用所述铝热交换器的铝包层材料的铝热交换器以及制造方法 因此。 所述铝包层材料包括在其至少一个表面上包覆的铝合金芯材料和牺牲阳极材料层。 牺牲阳极材料层包括含有0.10质量%以上且小于1.50质量%的Si,0.10〜2.00质量%的Mg的铝合金。 其中存在100〜150000个/ mm 2的当量圆直径为0.1〜5.0μm的Mg-Si系结晶体,7个/ mm 2以下的具有圆当量直径的Mg-Si系结晶体 在牺牲阳极材料层中超过5.0μm和10.0μm或更小。