Abstract:
Provided herein is a composite anode active material including: a porous carbon structure; a first coating layer on the porous carbon structure and including a non-carbonaceous material capable of intercalating and deintercalating lithium; and a second coating layer on the first coating layer and including a carbonaceous material.
Abstract:
Provided are a negative electrode active material including a three-dimensional composite. The three-dimensional composite includes secondary particles containing a silicon carbide-based (SiCx, 0
Abstract:
Provided are a negative electrode active material including a three-dimensional composite. The three-dimensional composite includes secondary particles containing a silicon carbide-based (SiCx, 0
Abstract:
Provided are an anode active material for a lithium secondary battery, a manufacturing method thereof, and a lithium secondary battery including the same, the anode active material for a lithium secondary battery including: a carbon-based particle; a composite layer positioned on the carbon-based particle and including a silicon particle dispersed in a carbon matrix; and a carbon coating layer positioned on the composite layer.
Abstract:
Provided herein is a composite anode active material including: a porous carbon structure; a first coating layer on the porous carbon structure and including a non-carbonaceous material capable of intercalating and deintercalating lithium; and a second coating layer on the first coating layer and including a carbonaceous material.
Abstract:
Provided is a negative electrode active material for a lithium secondary battery according to the present invention, including a carbon-based particle including pores in an inner portion and/or a surface thereof; and a silicon-based coating layer positioned on a pore surface and/or a pore-free surface of the carbon-based particle and containing silicon carbon compound.
Abstract:
Provided herein is a composite anode active material including: a porous carbon structure; a first coating layer on the porous carbon structure and including a non-carbonaceous material capable of intercalating and deintercalating lithium; and a second coating layer on the first coating layer and including a carbonaceous material.
Abstract:
Provided are an electrode active material having a plurality of pores and a secondary battery including the same, and more particularly, a porous electrode active material including silicon-based oxide expressed by SiOx (0.5≦x≦1.2) and having a Brunauer, Emmett, and Teller (BET) specific surface area ranging from 2 m2/g to 100 m2/g, and a secondary battery including a cathode including a cathode active material, a separator, an anode including an anode active material, and an electrolyte, in which the anode active material includes a porous electrode active material including silicon-based oxide expressed by SiOx (0.5≦x≦1.2) and having a BET specific surface area ranging from 2 m2/g to 100 m2/g.
Abstract:
Provided herein is a composite anode active material including: a porous carbon structure; a first coating layer on the porous carbon structure and including a non-carbonaceous material capable of intercalating and deintercalating lithium; and a second coating layer on the first coating layer and including a carbonaceous material.
Abstract:
Provided are an electrode active material having a plurality of pores and a secondary battery including the same, and more particularly, a porous electrode active material including silicon-based oxide expressed by SiOx (0.5≦x≦1.2) and having a Brunauer, Emmett, and Teller (BET) specific surface area ranging from 2 m2/g to 100 m2/g, and a secondary battery including a cathode including a cathode active material, a separator, an anode including an anode active material, and an electrolyte, in which the anode active material includes a porous electrode active material including silicon-based oxide expressed by SiOx (0.5≦x≦1.2) and having a BET specific surface area ranging from 2 m2/g to 100 m2/g.