Abstract:
A semiconductor device comprises a fin shaped structure, a shallow trench isolation, a diffusion break structure and a gate electrode. The fin shaped structure is disposed on a substrate. The shallow trench isolation is disposed in the substrate and surrounds the fin shaped structure. The diffusion break structure is disposed in the fin shaped structure, and the gate electrode is disposed across the fin shaped structure.
Abstract:
An electrostatic discharge (ESD) protection device includes a first trigger element and a first silicon control rectifier (SCR) element. The first trigger element has a first parasitic bipolar junction transistor (BJT) formed in a substrate. The first SCR element has a second parasitic BJT formed in the substrate. The first parasitic BJT and the second parasitic BJT has a common parasitic bipolar base, and the first parasitic BJT has a trigger voltage substantially lower than that of the second parasitic BJT.
Abstract:
An electrostatic discharge (ESD) protection device includes a first trigger element and a first silicon control rectifier (SCR) element. The first trigger element has a first parasitic bipolar junction transistor (BJT) formed in a substrate. The first SCR element has a second parasitic BJT formed in the substrate. The first parasitic BJT and the second parasitic BJT has a common parasitic bipolar base, and the first parasitic BJT has a trigger voltage substantially lower than that of the second parasitic BJT.
Abstract:
An electrostatic discharge protection structure comprises an isolation layer, a high voltage P-well, an N-well, a P-well, a first doped region of N-type conductivity, a second doped region of P-type conductivity, a third doped region of N-type conductivity, a fourth doped region of P-type conductivity, an anode, and a cathode. The isolation layer is disposed on a substrate. The high voltage P-well is disposed on the isolation layer. The N-well is disposed in the high voltage P-well. The P-well is disposed in the high voltage P-well, and the P-well is separated from the N-well. The first and the second doped regions are disposed in the N-well. The third and the fourth doped regions are disposed in the P-well. The anode is electrically connected to the first doped region and the second doped region, and the cathode is electrically connected to the fourth doped region.
Abstract:
An electrostatic discharge protection structure includes a first well, a second well disposed in the first well, a first and a second doped region disposed in the first well, a third and a fourth doped region disposed in the second well, a first electrode electrically connected to the first doped region and the second doped region, and a second electrode electrically connected to the fourth doped region.
Abstract:
An electrostatic discharge protection structure includes a first well, a second well disposed in the first well, a first and a second doped region disposed in the first well, a third and a fourth doped region disposed in the second well, a first electrode electrically connected to the first doped region and the second doped region, and a second electrode electrically connected to the fourth doped region.
Abstract:
A semiconductor device comprises a fin shaped structure, a shallow trench isolation, a diffusion break structure and a gate electrode. The fin shaped structure is disposed on a substrate. The shallow trench isolation is disposed in the substrate and surrounds the fin shaped structure. The diffusion break structure is disposed in the fin shaped structure, and the gate electrode is disposed across the fin shaped structure.
Abstract:
An electrostatic discharge protection structure comprises an isolation layer, a high voltage P-well, an N-well, a P-well, a first doped region of N-type conductivity, a second doped region of P-type conductivity, a third doped region of N-type conductivity, a fourth doped region of P-type conductivity, an anode, and a cathode. The isolation layer is disposed on a substrate. The high voltage P-well is disposed on the isolation layer. The N-well is disposed in the high voltage P-well. The P-well is disposed in the high voltage P-well, and the P-well is separated from the N-well. The first and the second doped regions are disposed in the N-well. The third and the fourth doped regions are disposed in the P-well. The anode is electrically connected to the first doped region and the second doped region, and the cathode is electrically connected to the fourth doped region.