Abstract:
A color-changing product includes a fabric and a color-changing fiber embroidered into a portion of the fabric. The color-changing fiber includes an electrically conductive core and a coating disposed around the electrically conductive core. The coating includes a thermochromic pigment.
Abstract:
A color-changing product includes a fabric and a connection bus disposed along at least a portion of the fabric. The fabric includes a plurality of color-changing fibers. Each of the plurality of color-changing fibers has an electrically conductive core and a coating disposed around and along the electrically conductive core. The coating includes a color-changing pigment. The connection bus has a multi-layer structure including a metallic foil layer and a film layer. The metallic foil layer forms a weld between at least a subset of the plurality of color-changing fibers so that current can flow through the connection bus and into the electrically conductive core of at least the subset of the plurality of color-changing fibers. The film layer at least partially isolates the weld from a surrounding environment.
Abstract:
A color-changing monofilament includes an electrically conductive core and a coating disposed around and along the electrically conductive core. The coating includes a layer of polymeric material having a color-changing pigment.
Abstract:
A method for manufacturing a color-changing product using an electrical connectorization system including an ultrasonic welder includes providing a fabric to the electrical connectorization system where the fabric includes a plurality of color-changing fibers, providing a connection bus to the electrical connectorization system, and operating the electrical connectorization system to move the fabric and the connection bus into engagement with the ultrasonic welder to generate one or more welds between the connection bus and at least a subset of the plurality of color-changing fibers as the fabric and the connection bus pass the ultrasonic welder.
Abstract:
A method of manufacturing a color-changing fiber includes loading a polymeric material and a thermochromic pigment material into a fiber fabrication machine that comprises an extruder and a spinneret, operating the extruder to provide a molten mixture of the polymeric material and the thermochromic pigment material, providing a volume of the molten mixture to the spinneret, and operating the spinneret to coat an electrically conductive core with the molten mixture to form a coating layer around the electrically conductive core to produce the color-changing fiber. The polymeric material and the thermochromic pigment material are provided as (a) a first raw material comprising the polymeric material and a second raw material comprising the thermochromic pigment material or (b) a thermochromic pigment and polymer mixture.
Abstract:
A color-changing product includes a fabric and a connection bus disposed along at least a portion of the fabric. The fabric includes a plurality of color-changing fibers. Each of the plurality of color-changing fibers has an electrically conductive core and a coating disposed around and along the electrically conductive core. The coating includes a color-changing pigment. The connection bus has a multi-layer structure including a metallic foil layer and a film layer. The metallic foil layer forms a weld between at least a subset of the plurality of color-changing fibers so that current can flow through the connection bus and into the electrically conductive core of at least the subset of the plurality of color-changing fibers. The film layer at least partially isolates the weld from a surrounding environment.
Abstract:
A structured granular optical component for use within an optical apparatus includes a primary optically active component comprising a first optical material and a secondary optically active component contained within the first optically active component and comprising a second optical material different than the first optical material. The first optical material and the second optical material are selected to influence scattering. When incorporated into a macroscopic optical apparatus the structured granular optical component provides enhanced performance.
Abstract:
A color-changing product includes a fabric. The fabric includes a first layer and a second layer. The first layer is arranged using at least one fiber. The at least one fiber includes (a) an electrically conductive core and (b) a coating disposed around and along the electrically conductive core. The second layer is printed onto the first layer. The second layer includes a foreground thermochromic pigment that is selectively activatable by providing an electrical current to the electrically conductive core of the at least one fiber to change at least one of a foreground color or a pattern of the second layer.
Abstract:
A color-changing product includes a fabric. At least a portion of the fabric includes or is arranged using at least one of (i) a color-changing fiber or (ii) a color-changing yarn including the color-changing fiber. The color-changing fiber includes an electrically conductive core having a first tensile strength, a reinforcement core having a second tensile strength that is greater than the first tensile strength, and a coating disposed around and along the electrically conductive core and the reinforcement core. The coating includes a polymeric material having a color-changing pigment.
Abstract:
A color-changing product includes a fabric. At least a portion of the fabric includes or is arranged using at least one of (i) a color-changing fiber or (ii) a color-changing yarn including the color-changing fiber. The color-changing fiber includes an electrically conductive core having a first tensile strength, a reinforcement core having a second tensile strength that is greater than the first tensile strength, and a coating disposed around and along the electrically conductive core and the reinforcement core. The coating includes a polymeric material having a color-changing pigment.