Abstract:
A method and system for cancelling body movement effect for non-contact vital sign detection is described. The method begins with sending on a first electromagnetic wave transceiver a first electromagnetic signal with a first frequency to a first side of a body, such as a person or animal. Simultaneously using a second electromagnetic wave transceiver a second electromagnetic signal is sent with a second frequency to a second side of a body, wherein the first frequency and the second frequency are different frequencies. A first reflected electromagnetic signal reflected back in response to the first electromagnetic wave on the first transceiver is received and a first baseband complex signal is extracted. Likewise a second reflected electromagnetic signal reflected back in response to the second electromagnetic wave on the second transceiver is received and a second baseband complex signal is extracted. The first baseband complex signal is mathematically combined with the second baseband complex signal to cancel out a Doppler frequency drift therebetween to yield a periodic Doppler phase effect.
Abstract:
Devices, methods and systems for wave and water level measurement using a single DC (direct current)-coupled CW (continuous wave) Doppler radar for detecting water elevation changes in time when installed up to several meters from the water surface. The radar is wireless and can stream continuous data to a local PC (personal computer) or base station in range of its radio. The radar can sample up to 40 Hz and can run on batteries for continuous sampling. The radars can include multiple radar configurations of 1, 2 and 4 radar configurations. Applications for this radar can include the measurement of beach run-up, free surface elevation in tidal zones, and storm surge elevations near bridges and critical infrastructure during storm events.
Abstract:
A method and system for cancelling body movement effect for non-contact vital sign detection is described. The method begins with sending on a first electromagnetic wave transceiver a first electromagnetic signal with a first frequency to a first side of a body, such as a person or animal. Simultaneously using a second electromagnetic wave transceiver a second electromagnetic signal is sent with a second frequency to a second side of a body, wherein the first frequency and the second frequency are different frequencies. A first reflected electromagnetic signal reflected back in response to the first electromagnetic wave on the first transceiver is received and a first baseband complex signal is extracted. Likewise a second reflected electromagnetic signal reflected back in response to the second electromagnetic wave on the second transceiver is received and a second baseband complex signal is extracted. The first baseband complex signal is mathematically combined with the second baseband complex signal to cancel out a Doppler frequency drift therebetween to yield a periodic Doppler phase effect.
Abstract:
Devices, methods and systems for wave and water level measurement using a single DC (direct current)-coupled CW (continuous wave) Doppler radar for detecting water elevation changes in time when installed up to several meters from the water surface. The radar is wireless and can stream continuous data to a local PC (personal computer) or base station in range of its radio. The radar can sample up to 40 Hz and can run on batteries for continuous sampling. The radars can include multiple radar configurations of 1, 2 and 4 radar configurations. Applications for this radar can include the measurement of beach run-up, free surface elevation in tidal zones, and storm surge elevations near bridges and critical infrastructure during storm events.
Abstract:
Embodiments of the present invention provide a method for non-contact detection techniques of mechanical vibrations utilizing a radio frequency system incorporating multiple carrier wavelengths. The new detection method measures multiple harmonic pairs at a carrier frequency and improves the detection accuracy and reliability by first inspecting the Bessel function coefficient of each harmonic and then determining the harmonic amplitude. The original mechanical vibration can then be reconstructed. Embodiments can be used to realize sensing of complex non-sinusoidal vibrations using a wavelength division sensing technique and allow non-contact detection through walls, smoke, fog or other low visibility environments with the advantage of longer range detection and easy integration at a low cost.