Abstract:
Aspects of the present disclosure relate to magnetic resonance thermometry. In one embodiment, a method includes acquiring undersampled magnetic resonance data associated with an area of interest of a subject receiving focused ultrasound treatment, and reconstructing images corresponding to the area of interest based on the acquired magnetic resonance data, where the reconstructing uses Kalman filtering.
Abstract:
Aspects of the present disclosure relate to systems and methods for medical imaging that incorporate prior knowledge. Some aspects relate to incorporating prior knowledge using a non-local means filter. Some aspects relate to incorporating prior knowledge for improved perfusion imaging, such as those incorporating arterial spin labeling.
Abstract:
Methods and systems are described for producing non-invasive and targeted neuronal lesions using magnetic resonance and acoustic energy. Imaging data corresponding to a region of interest is obtained, the region of interest within an imaging subject. Information indicative of a target region within the region of interest is received from the obtained imaging data. Focused acoustic energy directed to the target region within the region of interest is generated to disrupt a barrier between a therapeutic agent and parenchymal tissue in response to insonification by the focused acoustic energy, the therapeutic agent comprising a neurotoxin and microbubbles.
Abstract:
Systems and methods for accelerated arterial spin labeling (ASL) using compressed sensing are disclosed. In one aspect, in accordance with one example embodiment, a method includes acquiring magnetic resonance data associated with an area of interest of a subject, wherein the area of interest corresponds to one or more physiological activities of the subject. The method also includes performing image reconstruction using temporally constrained compressed sensing reconstruction on at least a portion of the acquired magnetic resonance data, wherein acquiring the magnetic resonance data includes receiving data associated with ASL of the area of interest of the subject.
Abstract:
Aspects of the present disclosure relate to magnetic resonance thermometry. In one embodiment, a method includes acquiring undersampled magnetic resonance data associated with an area of interest of a subject receiving focused ultrasound treatment, and reconstructing images corresponding to the area of interest based on the acquired magnetic resonance data, where the reconstructing uses Kalman filtering.
Abstract:
Methods and systems are described for producing non-invasive and targeted neuronal lesions using magnetic resonance and acoustic energy. Imaging data corresponding to a region of interest is obtained, the region of interest within an imaging subject. Information indicative of a target region within the region of interest is received from the obtained imaging data. Focused acoustic energy directed to the target region within the region of interest is generated to disrupt a barrier between a therapeutic agent and parenchymal tissue in response to insonification by the focused acoustic energy, the therapeutic agent comprising a neurotoxin and microbubbles.
Abstract:
Systems and methods for accelerated arterial spin labeling (ASL) using compressed sensing are disclosed. In one aspect, in accordance with one example embodiment, a method includes acquiring magnetic resonance data associated with an area of interest of a subject, wherein the area of interest corresponds to one or more physiological activities of the subject. The method also includes performing image reconstruction using temporally constrained compressed sensing reconstruction on at least a portion of the acquired magnetic resonance data, wherein acquiring the magnetic resonance data includes receiving data associated with ASL of the area of interest of the subject.
Abstract:
Aspects of the present disclosure relate to systems and methods for medical imaging that incorporate prior knowledge. Some aspects relate to incorporating prior knowledge using a non-local means filter. Some aspects relate to incorporating prior knowledge for improved perfusion imaging, such as those incorporating arterial spin labeling.