Abstract:
A counter-current catalyst regenerator with at least two stages of counter-current contact along with a regenerator riser is proposed. Each stage may comprise a permeable barrier that allows upward passage of oxygen-containing gas and downward passage of coked catalyst into each stage, but inhibits upward movement of catalyst to mitigate back mixing and approximate true counter-current contact and efficient combustion of coke from catalyst. The regenerator riser may provide a passage to transport the catalyst and may serve as a secondary stage for coke combustion to provide the regenerated catalyst.
Abstract:
A vessel provides for removing hydrocarbons from a catalyst. In an FCC unit, the vessel includes first and second sections. The first section includes at least one grid having a plurality of intersecting members and openings therebetween. The second section includes structured packing such as a plurality of ribbons. Grids are supported by pipes that are supported by the second section.
Abstract:
A process and apparatus for heating catalyst is presented. Cooler catalyst is removed from a reactor and heated with a hot gas in a riser, heated in a heating tube or heated in a heating chamber. Heated catalyst is disengaged from the hot gas if necessary and returned to the reactor. The process and apparatus can be used for producing light olefins. The hot gas may be a flue gas from an FCC regenerator or a combustion gas from a heater.
Abstract:
An apparatus comprising a feed distributor comprising a side cluster of orifices instead of or in combination with an end cluster of orifices for distributing hydrocarbon feed into a catalyst stream. A side cluster of orifices in conjunction with an end cluster of orifices on a feed distributor can distribute hydrocarbon feed into a riser over a greater cross-sectional extent enabling emission of smaller droplet sizes which provide better conversion with less coke production.
Abstract:
A method for fluidizing a spent catalyst in a regenerator during a combustion process. The combustor includes a vessel and an air distributor. The air distributor includes an air grid and a plurality of first nozzles extending from the air grid. Spent catalyst is introduced into the vessel. Air is provided to the vessel via the plurality of first nozzles at a base combustion air rate. Additional air is provided to the vessels via a plurality of second nozzles of a fluffing air distributor at a fluffing air rate that is between 0.5 wt % and 10 wt % of the base combustion air rate to fluidize the catalyst. The second nozzles have outlets that are disposed below the air grid and above a bottom head of the vessel.
Abstract:
A counter-current catalyst regenerator with at least two stages of counter-current contact along with a regenerator riser is proposed. Each stage may comprise a permeable barrier that allows upward passage of oxygen-containing gas and downward passage of coked catalyst into each stage, but inhibits upward movement of catalyst to mitigate back mixing and approximate true counter-current contact and efficient combustion of coke from catalyst. The regenerator riser may provide a passage to transport the catalyst and may serve as a secondary stage for coke combustion to provide the regenerated catalyst.
Abstract:
An apparatus for separating solid particles from a stream of a mixture of gaseous fluids and solid particles has a separation vessel. A mixture conduit extends vertically into a central section of the separation vessel and defines a discharge opening located within the vessel and tangentially oriented for discharging the stream into an open interior of the vessel and imparting a tangential velocity to the stream. A gas recovery conduit within the separation vessel has an inlet for withdrawing gaseous fluids from within the open interior of the separation vessel at a location below the discharge opening and radially offset from the mixture conduit. An intermediate portion of the gas recovery conduit is located above the inlet within the separation vessel and has a diameter greater than a diameter of the inlet.
Abstract:
A counter-current catalyst regenerator with at least two stages of counter-current contact along with a regenerator riser is proposed. Each stage may comprise a permeable barrier that allows upward passage of oxygen-containing gas and downward passage of coked catalyst into each stage, but inhibits upward movement of catalyst to mitigate back mixing and approximate true counter-current contact and efficient combustion of coke from catalyst. The regenerator riser may provide a passage to transport the catalyst and may serve as a secondary stage for coke combustion to provide the regenerated catalyst.
Abstract:
A process and apparatus described is for distributing fluidizing gas to a riser. Fluidizing gas is delivered to a plenum below the riser. A first stream of fluidizing gas is distributed from the plenum into a chamber in a riser and a second stream of fluidizing gas is distributed from the plenum into the riser outside of the chamber. First nozzles in the plenum have a first outlet in the chamber and second nozzles in the plenum have a second outlet outside of the chamber. Streams of regenerated catalyst and carbonized catalyst may be passed to the riser and mixed around the chamber in a lower section of a riser.
Abstract:
A fluid catalytic cracking reactor including a vessel, a chamber housed within the vessel, and a plurality of cyclones housed within the vessel, but externally of the chamber. The plurality of cyclones are arranged in a plurality of cyclone clusters, where each of the cyclone clusters includes a grouping of at least two cyclones that share common outlet piping for communication with the chamber. Alternatively, a fluid catalytic cracking reactor including a vessel, a chamber housed within the vessel, and a plurality of catalytic separation devices housed within the vessel, but externally of the chamber. The catalytic separation devices are in communication with the chamber via outlet piping. Preferably, the catalytic separation devices of the reactor are also in communication with a plenum via separator gas outlet piping, and optionally at least one of the catalytic separation devices feeds an outlet vapor stream into at least two different separator gas outlet piping members.