Abstract:
An oxygen gas stream is distributed to a spent catalyst stream through an oxygen nozzle of an oxygen gas distributor and a fuel gas stream is distributed to the spent catalyst stream through a fuel nozzle of a fuel gas distributor. An oxygen gas jet generated from said oxygen nozzle and a fuel gas jet generated from said fuel gas nozzle have the same elevation in the regenerator. In a regenerator, an oxygen gas distributor and a fuel gas distributor may be located in a mixing chamber. A fuel outlet of a fuel nozzle of the fuel gas distributor may be within a fifth of the height of the mixing chamber from an oxygen outlet of an oxygen nozzle of the oxygen gas distributor. In addition, clear space is provided between a fuel gas nozzle on a fuel gas distributor and a closest oxygen nozzle on an oxygen gas distributor.
Abstract:
An oxygen gas stream is distributed to a spent catalyst stream through an oxygen nozzle of an oxygen gas distributor and a fuel gas stream is distributed to the spent catalyst stream through a fuel nozzle of a fuel gas distributor. An oxygen gas jet generated from said oxygen nozzle and a fuel gas jet generated from said fuel gas nozzle have the same elevation in the regenerator. In a regenerator, an oxygen gas distributor and a fuel gas distributor may be located in a mixing chamber. A fuel outlet of a fuel nozzle of the fuel gas distributor may be within a fifth of the height of the mixing chamber from an oxygen outlet of an oxygen nozzle of the oxygen gas distributor. In addition, clear space is provided between a fuel gas nozzle on a fuel gas distributor and a closest oxygen nozzle on an oxygen gas distributor.
Abstract:
In an FCC apparatus and process gas and catalyst exit from a riser, are disengaged from each other and the catalyst is stripped. Product gases are evacuated from catalyst that can over crack the product gases to other undesired products. A baffle in or above the stripping section can direct product gases into a passage that evacuates the product gases to product recovery in isolation from the catalyst.
Abstract:
In an FCC apparatus and process gas and catalyst exit from a riser, are disengaged from each other and the catalyst is stripped. Product gases are evacuated from catalyst that can over crack the product gases to other undesired products. A baffle in or above the stripping section can direct product gases into a passage that evacuates the product gases to product recovery in isolation from the catalyst.
Abstract:
A process and apparatus described is for distributing fluidizing gas to a riser. Fluidizing gas is delivered to a plenum below the riser. A first stream of fluidizing gas is distributed from the plenum into a chamber in a riser and a second stream of fluidizing gas is distributed from the plenum into the riser outside of the chamber. First nozzles in the plenum have a first outlet in the chamber and second nozzles in the plenum have a second outlet outside of the chamber. Streams of regenerated catalyst and carbonized catalyst may be passed to the riser and mixed around the chamber in a lower section of a riser.
Abstract:
A process and apparatus for catalytic conversion of feedstock and separating catalyst from product gas comprises a first hydrocarbon feedstock contacted with a first stream of catalyst in a first riser to produce a first mixture of catalyst and product gases. A second hydrocarbon feedstock is contacted with a second stream of catalyst in a second riser to produce a second mixture of catalyst and product gases. The first riser and/or the second riser may terminate within a reactor vessel. The first mixture of catalyst and product gases from the first riser pass into a first disengagement chamber within the reactor vessel. The second mixture of catalyst and product gases pass from the second riser into a second disengagement chamber within the same reactor vessel.
Abstract:
In an apparatus for fluid catalytic cracking a riser having a top and a bottom for fluidizing and cracking a hydrocarbon feed stream by contact with catalyst exits an outlet at the top of the riser. A downer in communication with the outlet of the riser receives cracked hydrocarbon product and catalyst. A swirl duct in communication with the downer has a discharge opening below the outlet for discharging said cracked hydrocarbon product and catalyst. A stream of hydrocarbon feed and a catalyst is passed upwardly in a riser. A stream of gaseous hydrocarbon products and catalyst is directedly downwardly and then the stream of gaseous hydrocarbon products and catalyst are directed to flow in an angular direction to separate gaseous hydrocarbon products from the catalyst.
Abstract:
A process and apparatus for combusting coke from catalyst two stages is disclosed. Catalyst and flue gas from a lower chamber ascends to an upper chamber to be roughly separated by swirl ducts extending from a combustion conduit. The swirl ducts may discharge into a container in the upper chamber.
Abstract:
A process and apparatus described is for distributing fluidizing gas to a riser. Fluidizing gas is delivered to a plenum below the riser. A first stream of fluidizing gas is distributed from the plenum into a chamber in a riser and a second stream of fluidizing gas is distributed from the plenum into the riser outside of the chamber. First nozzles in the plenum have a first outlet in the chamber and second nozzles in the plenum have a second outlet outside of the chamber. Streams of regenerated catalyst and carbonized catalyst may be passed to the riser and mixed around the chamber in a lower section of a riser.
Abstract:
A fluid catalytic cracking reactor including a vessel, a chamber housed within the vessel, and a plurality of cyclones housed within the vessel, but externally of the chamber. The plurality of cyclones are arranged in a plurality of cyclone clusters, where each of the cyclone clusters includes a grouping of at least two cyclones that share common outlet piping for communication with the chamber. Alternatively, a fluid catalytic cracking reactor including a vessel, a chamber housed within the vessel, and a plurality of catalytic separation devices housed within the vessel, but externally of the chamber. The catalytic separation devices are in communication with the chamber via outlet piping. Preferably, the catalytic separation devices of the reactor are also in communication with a plenum via separator gas outlet piping, and optionally at least one of the catalytic separation devices feeds an outlet vapor stream into at least two different separator gas outlet piping members.