Abstract:
Method for making modified cellulose products comprises—processing cellulose pulp to modified cellulose pulp at a manufacturing location to increase the susceptibility of fibers to disintegration,—setting the modified cellulose pulp to a suitable dry matter content, and—transporting the modified cellulose pulp at set dry matter content to a location of use, where the modified cellulose pulp is disintegrated to nanofibrillar cellulose.
Abstract:
Cellulose is oxidized catalytically using a heterocyclic nitroxyl radical as catalyst, main oxidant acting as oxygen source, and an activator of the heterocyclic nitroxyl radical. The oxidation is performed in a reaction medium which is at medium consistency of cellulosic pulp, which is above 6%, more preferably equal to or higher than 8%, and most preferably in the range of 8-12%. The reaction medium is mixed in a reactor through circulation of the reaction medium back to the reactor.
Abstract:
Cellulose is oxidized catalytically using a heterocyclic nitroxyl radical as catalyst, main oxidant acting as oxygen source, and an activator of the heterocyclic nitroxyl radical. The oxidation is performed in a reaction medium which is at medium consistency of cellulosic pulp, which is above 6%, more preferably equal to or higher than 8%, and most preferably in the range of 8-12%. The reaction medium is mixed in a reactor through circulation of the reaction medium back to the reactor.
Abstract:
Method for making modified cellulose products comprises —processing cellulose pulp to modified cellulose pulp at a manufacturing location to increase the susceptibility of fibers to disintegration, —setting the modified cellulose pulp to a suitable dry matter content, and —transporting the modified cellulose pulp at set dry matter content to a location of use, where the modified cellulose pulp is disintegrated to nanofibrillar cellulose.
Abstract:
In a method for producing nanofibrillar cellulose, cellulose based fiber material in dispersion is processed for separating fibrils. The method includes a first step where the fiber material is supplied to a disperser, where it flows through several counter-rotating rotors in such a way that the material is repeatedly subjected to shear and impact forces by the effect of the different counter-rotating rotors, and a second step, where the fiber material obtained from the first step is supplied to a homogenizer, where it is subjected to homogenization by the effect of pressure.
Abstract:
A method for making nanofibrillar cellulose includes mixing anionized or cationized cellulose fibers and cellulose pulp to a mixture including at least 1% and below 90 wt-% cellulose pulp based on dry weight, and subjecting the mixture to a refiner stage where the anionized or cationized cellulose fibers are at least partly reduced to nanofibrillar cellulose and the cellulose pulp acts as auxiliary pulp, and obtaining a mixture of nanofibrillar cellulose and cellulose pulp from the refining stage. The mixture can be used for making paper by adding it to base pulp.
Abstract:
In a method for transporting nanofibrillar cellulose in the form of viscous liquid dispersion, the nanofibrillar cellulose is unloaded from a container (3) through a discharge point (3b) which is the lowermost point with respect to the volume of nanofibrillar cellulose in the container at least at the time of unloading. The nanofibrillar cellulose is unloaded and transported to a target location along a pipe (2) using a progressive cavity pump (P2) operating on a positive displacement principle with the suction side of the pump at a distance from the discharge point (3b). The discharge of the nanofibrillar cellulose is ensured by selecting the distance (L) of the suction side of the pump (P2) from the discharge point (3b) so short that the nanofibrillar cellulose flows from the container (3) by the effect of the pump suction, or pressurizing the nanofibrillar cellulose in the container (3) to such a pressure (p) that it will flow at the selected distance (L) of the suction side from the discharge point by the common effect of the pressure of the nanofibrillar cellulose and the pump suction.