Abstract:
Embodiments of the invention relate to polycrystalline diamond compacts (“PDCs”) including a polycrystalline diamond (“PCD”) table in which cobalt is alloyed with phosphorous to improve the thermal stability of the PCD table. In an embodiment, a PDC includes a substrate and a PCD table including an upper surface spaced from an interfacial surface that is bonded to the substrate. The PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The PCD table further includes an alloy comprising at least one Group VIII metal and phosphorous. The alloy is disposed in at least a portion of the plurality of interstitial regions.
Abstract:
Polycrystalline diamond compacts (“PDCs”) include a polycrystalline diamond (“PCD”) table in which cobalt is alloyed with phosphorous to improve the thermal stability of the PCD table. For example, a PDC includes a substrate and a PCD table including an upper surface spaced from an interfacial surface that is bonded to the substrate. The PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The PCD table further includes an alloy comprising at least one Group VIII metal and phosphorous. The alloy is disposed in at least a portion of the plurality of interstitial regions.
Abstract:
Polycrystalline diamond compacts (“PDCs”) include a polycrystalline diamond (“PCD”) table in which cobalt is alloyed with phosphorous to improve the thermal stability of the PCD table. For example, a PDC includes a substrate and a PCD table including an upper surface spaced from an interfacial surface that is bonded to the substrate. The PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The PCD table further includes an alloy comprising at least one Group VIII metal and phosphorous. The alloy is disposed in at least a portion of the plurality of interstitial regions.
Abstract:
Polycrystalline diamond compacts (“PDCs”) include a polycrystalline diamond (“PCD”) table in which cobalt is alloyed with phosphorous to improve the thermal stability of the PCD table. The PDC includes a substrate and a PCD table including an upper surface spaced from an interfacial surface that is bonded to the substrate. The PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The PCD table further includes an alloy comprising at least one Group VIII metal and phosphorous. The alloy is disposed in at least a portion of the plurality of interstitial regions.
Abstract:
Some embodiments relate to cutting element assemblies including a superabrasive cutting element that may be axially compressed to enhance the damage tolerance thereof, enclosed in an enclosure that exposes the superabrasive cutting element therethrough, enclosed in an enclosure that restricts rotation of the superabrasive cutting element, or combinations of the foregoing. Additionally, some embodiments relate to cutting element assemblies in which a superabrasive cutting element is mechanically fastened to a base, such as a substrate or directly to a bit body of a rotary drill bit. Some embodiments also relate to cutting element assemblies including one or more superabrasive cutting elements that are rotatable about a longitudinal axis of the cutting element assembly, that may be axially compressed to enhance the damage tolerance thereof, that may be enclosed in an enclosure that exposes the superabrasive cutting element therethrough, or combinations thereof.
Abstract:
Some embodiments relate to cutting element assemblies including a superabrasive cutting element that may be axially compressed to enhance the damage tolerance thereof, enclosed in an enclosure that exposes the superabrasive cutting element therethrough, enclosed in an enclosure that restricts rotation of the superabrasive cutting element, or combinations of the foregoing. Additionally, some embodiments relate to cutting element assemblies in which a superabrasive cutting element is mechanically fastened to a base, such as a substrate or directly to a bit body of a rotary drill bit. Some embodiments also relate to cutting element assemblies including one or more superabrasive cutting elements that are rotatable about a longitudinal axis of the cutting element assembly, that may be axially compressed to enhance the damage tolerance thereof, that may be enclosed in an enclosure that exposes the superabrasive cutting element therethrough, or combinations thereof.