摘要:
Embodiments disclosed herein relate to cell assemblies for fabricating superhard materials (e.g., used in a high-pressure cubic press) and methods of using the same. The disclosed cell assemblies include a plurality of internal anvils, at least some of which are positioned internally relative to a cell pressure medium of the cell assembly. Such a configuration for the cell assemblies may enable one or more of intensifying cell pressure, reducing processing time, or reducing costs for fabricating such superhard materials.
摘要:
In an embodiment, a method of fabricating a polycrystalline diamond compact is disclosed. The method includes sintering a plurality of diamond particles in the presence of a metal-solvent catalyst to form a polycrystalline diamond body; leaching the polycrystalline diamond body to at least partially remove the metal-solvent catalyst therefrom, thereby forming an at least partially leached polycrystalline diamond body; and subjecting an assembly of the at least partially leached polycrystalline diamond body and a cemented carbide substrate to a high-pressure/high-temperature process at a pressure to infiltrate the at least partially leached polycrystalline diamond body with an infiltrant. The pressure of the high-pressure/high-temperature process is less than that employed in the act of sintering of the plurality of diamond particles.
摘要:
Embodiments of methods are disclosed for characterizing a tested superabrasive element, such as a polycrystalline diamond element. In an embodiment, a method of characterizing the relative strength of a superabrasive element is disclosed. A first superabrasive element and a second superabrasive element are positioned upper surface to upper surface, including an area of overlap between the upper surfaces. A load is applied while the first and second superabrasive elements are overlapped until failure of one or both of the first or second superabrasive elements fail. A relative strength is determined using at least the load during failure as a parameter.
摘要:
A polycrystalline diamond compact useful for wear, cutting, drilling, drawing and like applications is provided with a first diamond region remote from the working surface which has a metallic catalyzing material and a second diamond region adjacent to or including the working surface containing a non-metallic catalyst and the method of making such a compact is provided. This compact is particularly useful in high temperature operations, such as hard rock drilling because of the improved thermal stability at the working surface.
摘要:
Embodiments of the invention relate to methods of fabricating polycrystalline diamond compacts (“PDCs”) and applications for such PDCs. In an embodiment, a method of fabricating a PDC includes providing a polycrystalline diamond (“PCD”) table in which a catalyst is disposed throughout, leaching the PCD table with a gaseous leaching agent to remove catalyst from the PCD table and bonding the at least partially leached PCD table to a substrate to form a PDC.
摘要:
In an embodiment, a method of fabricating a polycrystalline diamond compact is disclosed. The method includes sintering a plurality of diamond particles in the presence of a metal-solvent catalyst to form a polycrystalline diamond body; leaching the polycrystalline diamond body to at least partially remove the metal-solvent catalyst therefrom, thereby forming an at least partially leached polycrystalline diamond body; and subjecting an assembly of the at least partially leached polycrystalline diamond body and a cemented carbide substrate to a high-pressure/high-temperature process at a pressure to infiltrate the at least partially leached polycrystalline diamond body with an infiltrant. The pressure of the high-pressure/high-temperature process is less than that employed in the act of sintering of the plurality of diamond particles.
摘要:
In an embodiment, a method of fabricating a polycrystalline diamond compact is disclosed. The method includes sintering a plurality of diamond particles in the presence of a metal-solvent catalyst to form a polycrystalline diamond body; leaching the polycrystalline diamond body to at least partially remove the metal-solvent catalyst therefrom, thereby forming an at least partially leached polycrystalline diamond body; and subjecting an assembly of the at least partially leached polycrystalline diamond body and a cemented carbide substrate to a high-pressure/high-temperature process at a pressure to infiltrate the at least partially leached polycrystalline diamond body with an infiltrant. The pressure of the high-pressure/high-temperature process is less than that employed in the act of sintering of the plurality of diamond particles.
摘要:
Embodiments of the invention relate to bearing assemblies and associated cardiopulmonary bypass blood pumps in which the bearing assembly includes a stator and a rotor each including bearing surfaces oriented so as to be generally opposed to one another. The bearing surface may comprise a polycrystalline diamond material including a plurality of bonded diamond grains defining a plurality of interstitial regions therebetween, in which a non-metallic catalyst (e.g., a carbonate) and/or at least one derivative thereof is disposed interstitially between the bonded diamond grains.
摘要:
Embodiments of the invention relate to polycrystalline diamond compacts (“PDC”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, a PDC includes a polycrystalline diamond (“PCD”) table bonded to a substrate. At least a portion of the PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The plurality of interstitial regions includes a metal-solvent catalyst. The plurality of diamond grains exhibit an average grain size of about 30 μm or less. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit an average electrical conductivity of less than about 1200 S/m. Other embodiments are directed to PCD, employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
摘要:
Embodiments relate to methods of fabricating polycrystalline diamond compacts (“PDCs”) in which a removing agent includes at least one supercritical fluid component that is used to remove at least one interstitial constituent from at least a portion of a polycrystalline diamond (“PCD”) body and applications for such PDCs. Removing the at least one interstitial constituent using the removing agent including the at least one supercritical fluid component may provide more rapid and effective removal of the at least one interstitial constituent from a PCD body than conventional acid leaching. In an embodiment, a method of fabricating at least partially porous PCD body includes providing a PCD body in which at least one interstitial constituent is disposed throughout, and removing at least a portion of the at least one interstitial constituent from the PCD body with a removing agent including at least one supercritical fluid component.