摘要:
A method for processing spent nickel-based cathode material useful in lithium-based batteries, the method comprising: (i) producing an initial mixture containing the spent nickel-based cathode material and a molten salt system comprising cations and anions, wherein the cations comprise lithium cations; (ii) heating the initial mixture to a temperature of 700° C. to 900° C. for at least 1 hour to produce a relithiated cathode material; and (iii) washing the relithiated cathode material to remove any residual salt. In a further method, the cations comprise nickel and lithium cations and the anions comprise chloride or bromide anion in combination with at least one of nitrate, sulfate, and carbonate anions in further combination with hydroxide anion, wherein the method results in upcycling of the nickel-based cathode material to produce a version of said relithiated cathode material having a greater nickel content.
摘要:
A method for extracting a rare earth element from a rare earth-containing substance, the method comprising mixing the rare earth-containing substance with a protic ionic liquid, such as: wherein R1 is selected from hydrogen atom and hydrocarbon groups containing 1 to 6 carbon atoms; R2 and R3 are independently selected from hydrocarbon groups containing 1 to 12 carbon atoms; and X− is an anionic species; to produce a composition of the formula (RE)(amide)yXz at least partially dissolved in the protic ionic liquid, wherein RE is at least one rare earth element having an atomic number selected from 39, 57-71, and 90-103; y is 2-6; z is a number that charge balances the total positive charge of RE; and the amide is the conjugate base of the cationic portion of the protic ionic liquid of Formula (1) and has the following formula:
摘要:
An ionic liquid composition having the following generic structural formula: wherein R1, R2, R3, and R4 are equivalent and selected from hydrocarbon groups containing at least three carbon atoms, and X− is a phosphorus-containing anion, particularly an organophosphate, organophosphonate, or organophosphinate anion, or a thio-substituted analog thereof containing hydrocarbon groups with at least three carbon atoms. Also described are lubricant compositions comprising the above ionic liquid and a base oil, wherein the ionic liquid is dissolved in the base oil. Further described are methods for applying the ionic liquid or lubricant composition onto a mechanical device for which lubrication is beneficial, with resulting improvement in friction reduction, wear rate, and/or corrosion inhibition.
摘要:
A method for converting amorphous boron nitride to crystalline boron nitride, the method comprising immersing the amorphous boron nitride into anhydrous molten magnesium chloride maintained within a temperature range of 720° C.-820° C. while the amorphous boron nitride is cathodically polarized at a voltage within a range of −2.2V to −2.8V for a period of time of at least 2 minutes to result in conversion of the amorphous boron nitride to the crystalline form. Also described herein is a method for converting an amorphous carbon material to a crystalline carbon material, the method comprising immersing said amorphous carbon material into anhydrous molten magnesium chloride maintained within a temperature range of 780° C.-820° C. while the amorphous carbon material is cathodically polarized at a voltage within a range of −2.2V to −2.8V for a period of time of at least 2 minutes to result in conversion of the amorphous carbon material to the crystalline form.
摘要:
An ionic liquid composition having the following generic structural formula: wherein Z is N or P, and R1, R2, R3, and R4 are independently selected from hydrogen atom and hydrocarbon groups having one to four carbon atoms with optional interconnection to form a cyclic group that includes Z, and wherein R1, R2, R3, and R4 are all hydrocarbon groups when Z is P, and X− is a phosphorus-containing or carboxylate anion, particularly an organophosphate, organophosphonate, or organophosphinate anion, or a thio-substituted analog thereof containing hydrocarbon groups with at least three carbon atoms. Also described are lubricant compositions comprising the above ionic liquid and a base lubricant, wherein the ionic liquid is dissolved in the base lubricant. Further described are methods for applying the ionic liquid or lubricant composition onto a mechanical device for which lubrication is beneficial, with resulting improvement in friction reduction, wear rate, and/or corrosion inhibition.
摘要:
A heat transfer (exchange) composition comprising a halide salt matrix having dispersed therein nanoparticles comprising elemental carbon in the absence of water and surfactants, wherein said halide is fluoride or chloride, wherein the halide salt may be an alkali halide salt (e.g., lithium fluoride, sodium fluoride, potassium fluoride, rubidium fluoride, sodium chloride, potassium chloride, rubidium chloride, and eutectic mixtures thereof) or an alkaline earth halide salt (e.g., fluoride or chloride salt of beryllium, magnesium, calcium, strontium, or barium), and wherein the nanoparticles comprising elemental carbon may be solid or hollow, and wherein the composition may further include nanoparticles comprising a fissile material (e.g., U, Th, or Pu) dispersed within the composition. Molten salt reactors (MSRs) containing these heat transfer compositions in coolant loops in thermal exchange with a reactor core, as well operation of such MSRs, are also described.
摘要:
A heat transfer (exchange) composition comprising a halide salt matrix having dispersed therein nanoparticles comprising elemental carbon in the absence of water and surfactants, wherein said halide is fluoride or chloride, wherein the halide salt may be an alkali halide salt (e.g., lithium fluoride, sodium fluoride, potassium fluoride, rubidium fluoride, sodium chloride, potassium chloride, rubidium chloride, and eutectic mixtures thereof) or an alkaline earth halide salt (e.g., fluoride or chloride salt of beryllium, magnesium, calcium, strontium, or barium), and wherein the nanoparticles comprising elemental carbon may be solid or hollow, and wherein the composition may further include nanoparticles comprising a fissile material (e.g., U, Th, or Pu) dispersed within the composition. Molten salt reactors (MSRs) containing these heat transfer compositions in coolant loops in thermal exchange with a reactor core, as well operation of such MSRs, are also described.
摘要:
An ionic liquid composition having the following generic structural formula: wherein R1, R2, R3, and R4 are equivalent and selected from hydrocarbon groups containing at least three carbon atoms, and X− is a phosphorus-containing anion, particularly an organophosphate, organophosphonate, or organophosphinate anion, or a thio-substituted analog thereof containing hydrocarbon groups with at least three carbon atoms. Also described are lubricant compositions comprising the above ionic liquid and a base oil, wherein the ionic liquid is dissolved in the base oil. Further described are methods for applying the ionic liquid or lubricant composition onto a mechanical device for which lubrication is beneficial, with resulting improvement in friction reduction, wear rate, and/or corrosion inhibition.
摘要:
An ionic liquid composition having the following generic structural formula: wherein R1, R2, R3, and R4 are equivalent and selected from hydrocarbon groups containing at least three carbon atoms, and X− is a phosphorus-containing anion, particularly an organophosphate, organophosphonate, or organophosphinate anion, or a thio-substituted analog thereof containing hydrocarbon groups with at least three carbon atoms. Also described are lubricant compositions comprising the above ionic liquid and a base oil, wherein the ionic liquid is dissolved in the base oil. Further described are methods for applying the ionic liquid or lubricant composition onto a mechanical device for which lubrication is beneficial, with resulting improvement in friction reduction, wear rate, and/or corrosion inhibition.
摘要:
The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X+a)x(Y−b)y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that a·x=b·y, and at least one of X+ and Y− possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.