摘要:
Compounds of general formula (I): wherein R1, R2, R3, R4, X and Y are as defined herein are inhibitors of glutaminyl cyclase and are therefore useful in treating conditions that can be treated by modulation of glutaminyl cyclase activity.
摘要:
Compounds of general formula (I): wherein R1, R2, R3, R4, X and Y are as defined herein are inhibitors of glutaminyl cyclase and are therefore useful in treating conditions that can be treated by modulation of glutaminyl cyclase activity.
摘要:
The present invention provides novel physiological substrates of mammalian glutaminyl cyclase (QC, EC 2.3.2.5), new effectors of QC, methods for screening for such effectors, and the use of such effectors and pharmaceutical compositions comprising such effectors for the treatment of conditions that can be treated by modulation of QC-activity. Preferred compositions additionally comprise inhibitors of DP IV or DP IV-like enzymes for the treatment or alleviation of conditions that can be treated by modulation of QC- and DP IV-activity.
摘要:
Provided herein are methods for the treatment and/or prevention of an inflammatory disease or disorder through administration of an inhibitor of a glutaminyl peptide cyclotransferase. Inflammatory diseases or disorders treated or prevented by methods disclosed herein include mild cognitive impairment (MCI), rheumatoid arthritis, atherosclerosis, restenosis and pancreatitis.
摘要:
Methods for the treatment and/or prevention of an inflammatory disease or disorder through administration of an inhibitor of a glutaminyl peptide cyclotransferase. Inflammatory diseases or disorders treated or prevented by methods disclosed herein include mild cognitive impairment (MCI), rheumatoid arthritis, atherosclerosis, restenosis, pancreatitis, sepsis and peritonitus. Further provided are respective diagnostic methods, assays and kits.
摘要:
The present invention is directed compositions for targeted delivery of RNA interference (RNAi) polynucleotides to hepatocytes in vivo. Targeted RNAi polynucleotides are administered together with co-targeted melittin delivery peptides. Delivery peptides provide membrane penetration function for movement of the RNAi polynucleotides from outside the cell to inside the cell. Reversible modification provides physiological responsiveness to the delivery peptides.