Abstract:
A method includes classifying, via a computational model, images of a source image stream as valid images or invalid images based on whether the images include biological tissue or a surgical tool; and generating a condensed image stream that includes the valid images. Another method includes classifying input images as valid images or invalid images using: a clustering algorithm that classifies each of the input images into either a first group or a second group and using labels that indicate whether the input images include a surgical tool. The method also includes training a computational model to identify the valid images based on whether the valid images include biological tissue or a surgical tool, or whether the valid images have at least a threshold level of clarity.
Abstract:
A method includes accessing training images that collectively depict multiple stages of a surgical procedure. The method also includes accessing labels that indicate, for each of the training images, characteristics of one or more surgical tools depicted and a stage of the multiple stages of the surgical procedure depicted. The method also includes training a computational model, using the training images and the labels, to associate runtime images with a stage of the multiple stages based on characteristics of one or more surgical tools that are depicted by the runtime images. Another method includes associating, using a computational model, runtime images with a stage of a surgical procedure based on characteristics of one or more surgical tools depicted by the runtime images and generating output that indicates the stage associated with each of the runtime images.
Abstract:
Example methods and systems to facilitate osteocutaneous free flap reconstructions are provided. One example method involves causing a surgical navigation system to display a representation of a patient undergoing surgery; receiving input data representing one or more osteotomies made during the surgery to form a defect within the patient; determining a donor site for a bone graft having a contour that corresponds to the defect within the patient using a geometric alignment algorithm to identify, as the donor site, a portion of the bone graft that virtually aligns with the defect; generating a virtual template representing the bone graft; displaying the generated virtual template representing the bone graft within the representation of the patient as a navigational guide for harvesting of the bone graft; and displaying the generated virtual template positioned into the defect within the representation as a navigational guide for reconstructing the defect using the harvested bone graft.
Abstract:
Organization systems for surgical instruments input devices and associated methods and systems are disclosed herein. In one aspect, a surgical instrument input device organization system can include a first interface configured to receive input from a user and a second interface communicatively coupled to the first interface via a link. The second interface can include a module sized to receive a surgical input instrument device and an actuator configured to engage a movable surface of the surgical instrument input device in response to input received from the user at the first interface.
Abstract:
Organization systems for surgical instruments and associated methods and systems are disclosed herein. In one embodiment, a surgical instrument organization system can be configured for use in a medical environment, and can include a flexible, sterile container having a lower portion. The container can include an attachment system configured to elastically couple one or more surgical instruments to the lower portion of the container. In some embodiments, the container can be carried by a portable base coupled to a platform via an adjustable support member.
Abstract:
Organization systems for surgical instruments and associated methods and systems are disclosed herein. In one embodiment, a surgical instrument organization system can be configured for use in a medical environment, and can include a flexible, sterile container having a lower portion. The container can include an attachment system configured to elastically couple one or more surgical instruments to the lower portion of the container. In some embodiments, the container can be carried by a portable base coupled to a platform via an adjustable support member.
Abstract:
Organization systems for surgical instruments input devices and associated methods and systems are disclosed herein. In one aspect, a surgical instrument input device organization system can include a first interface configured to receive input from a user and a second interface communicatively coupled to the first interface via a link. The second interface can include a module sized to receive a surgical input instrument device and an actuator configured to engage a movable surface of the surgical instrument input device in response to input received from the user at the first interface.