摘要:
Systems and methods for reducing noise in balanced detection based optical coherence tomography (OCT) systems are described. Embodiments including both optical hardware and electronic based solutions to spectrally filter and attenuate the source reference light in optical coherence tomography in an effort to reduce RIN and FPN noise in OCT systems are presented. A novel application to electronic balanced detection schemes in which a single source of reference detection is balanced against the interferometric signals from multiple interferometers is also presented.
摘要:
Techniques for collecting and processing complex OCT data to detect localized motion contrast information with enhanced accuracy and sensitivity are presented. In a preferred embodiment, vector differences between complex OCT signals taken at the same location on the sample are used to detect blood flow in the retina. Additional embodiments involving non-linear intensity weighting of the motion contrast information, normalization of the vector difference amplitudes, and calculating the absolute value of the standard deviation of Doppler signal are described. Image processing techniques to enhance the images resulting from these motion contrast techniques are also presented.
摘要:
Systems and methods for reducing noise in balanced detection based optical coherence tomography (OCT) systems are described. Embodiments including both optical hardware and electronic based solutions to spectrally filter and attenuate the source reference light in optical coherence tomography in an effort to reduce RIN and FPN noise in OCT systems are presented. A novel application to electronic balanced detection schemes in which a single source of reference detection is balanced against the interferometric signals from multiple interferometers is also presented.
摘要:
Two-dimensional and three-dimensional optical coherence tomography is obtained by differential imaging of full-frame interference images using a white light source. Full-color tomographic imaging is also possible by processing the three-color channels of the interference images. A technique is described to obtain two-dimensional OCT images with full natural color representation. In a particular embodiment, the interference image is acquired using a color camera and the three-color channels are processed separately, recomposing the final image. In an additional embodiment, the interference images are acquired using separate red, blue and green light sources and the three color channels are combined to recompose the final image.
摘要:
Two-dimensional and three-dimensional optical coherence tomography is obtained by differential imaging of full-frame interference images using a white light source. Full-color tomographic imaging is also possible by processing the three-color channels of the interference images. A technique is described to obtain two-dimensional OCT images with full natural color representation. In a particular embodiment, the interference image is acquired using a color camera and the three-color channels are processed separately, recomposing the final image. In an additional embodiment, the interference images are acquired using separate red, blue and green light sources and the three color channels are combined to recompose the final image.
摘要:
Two-dimensional and three-dimensional optical coherence tomography is obtained by differential imaging of full-frame interference images using a white light source. Full-color tomographic imaging is also possible by processing the three-color channels of the interference images. A technique is described to obtain two-dimensional OCT images with full natural color representation. In a particular embodiment, the interference image is acquired using a color camera and the three-color channels are processed separately, recomposing the final image. In an additional embodiment, the interference images are acquired using separate red, blue and green light sources and the three color channels are combined to recompose the final image.