摘要:
An interferometer system includes an optics system configured to allow a first light beam to travel along a measurement path including a target, and a second light beam to travel along a fixed reference path excluding the target; and a signal generator configured to introduce a power-modulated optical signal in the measurement path or the reference path to determine jitter caused by components of the interferometer system downstream of the signal generator.
摘要:
An optical measurement system includes a light source, a spectroscopic detector, a reference sample, a switching mechanism that switches between a first optical path through which a sample to be measured is irradiated with light from the light source and light produced at the sample is guided to the spectroscopic detector and a second optical path through which the reference sample is irradiated with light from the light source and light produced at the reference sample is guided to the spectroscopic detector, and a processing unit that calculates, by performing correction processing based on change between a first detection result at first time and a second detection result at second time, a measurement value of the sample from a third detection result provided from the spectroscopic detector as a result of irradiation of the sample with light from the light source at third time temporally proximate to the second time.
摘要:
A method, measuring device, machining system and computer program product are provided for determining a corrected height signal from measurement data obtained with optical coherence tomography. The measurement data comprises an object signal and a background signal superimposed on the object signal, the object signal and the background signal being subject to different dispersion. A first transformation is performed comprising transforming the measurement data, the first transformation being targeted at the background signal to obtain a height signal, background components in the height signal are determined, the background components in the height signal are compensated to obtain a background-compensated height signal, an inverse transformation is performed comprising back-transforming the background-compensated height signal to obtain background-compensated measurement data, dispersion compensation for the object signal is performed to obtain dispersion-compensated and background-compensated measurement data, and a second transformation is performed comprising transforming the dispersion-compensated and background-compensated measurement data to obtain a dispersion-compensated and background-compensated height signal.
摘要:
An interferometer system including: an optical system arranged to split a radiation beam from a laser source into a first beam along a first optical path and a second beam along a second optical path, and recombine the first beam and the second beam to a recombined beam, a detector to receive the recombined beam and to provide a detector signal based on the received recombined beam, and a processing unit, wherein a first optical path length of the first optical path and a second optical path length of the second optical path have an optical path length difference, and wherein the processing unit is arranged to determine a mode hop of the laser source on the basis of a phase shift in the detector signal.
摘要:
The present invention discloses a dual-homodyne laser interferometric nanometer displacement measuring apparatus and method based on phase modulation. The linearly polarized beam with single wavelength emitted from a single frequency laser is projected onto a dual-homodyne laser interferometer consisting of four beam splitters and two retroreflectors to respectively form a measurement interference signal and a reference interference signal received by two photodetectors, respectively; an electro-optic phase modulator is placed in the optical path and a periodic sawtooth-wave voltage signal is applied to modulate the measurement and reference DC interference signals into AC interference signals; the measured displacement is obtained by detecting the variation of the phase difference between the two interference signals caused by the movement of the measured object. The present invention overcomes the error arising from DC drift in the homodyne laser interferometer and avoids the sinusoidal error caused by the direct subdivision of the interference signal or non-quadrature error of measurement interference signal. The present invention is applicable for the precision displacement measurement with sub-nanometer level accuracy in the fields of high-end equipment manufacturing and processing.
摘要:
An interference measurement device configured to detect a phase from an interference beam between an object beam and a reference beam, includes: a laser beam source; a splitter configured to split an emitted beam from the laser beam source into the object beam and the reference beam; an object beam optical unit configured to make only the object beam incident on a measurement object; a combination unit configured to combine the object beam and the reference beam; a phase element configured to vary mutual relationship in phase between the object beam and the reference beam; and a detector configured to detect the interference beam between the object beam and the reference beam. A signal of a spatial phase variation of the measurement object is directly operated, based on at least two measurement results of an intensity signal with the detector.
摘要:
An optical interrogation system, e.g., an OFDR-based system, measures local changes of index of refraction of a sensing light guide subjected to a time-varying disturbance. Interferometric measurement signals detected for a length of the sensing light guide are transformed into the spectral domain. A time varying signal is determined from the transformed interferometric measurement data set. A compensating signal is determined from the time varying signal which is used to compensate the interferometric measurement data set for the time-varying disturbance. The compensation technique may be applied along the length of the light guide.
摘要:
An apparatus (AS) measures positions of marks (202) on a lithographic substrate (W). An illumination arrangement (940, 962, 964) provides off-axis radiation from at least first and second regions. The first and second source regions are diametrically opposite one another with respect to an optical axis (O) and are limited in angular extent. The regions may be small spots selected according to a direction of periodicity of a mark being measured, or larger segments. Radiation at a selected pair of source regions can be generated by supplying radiation at a single source feed position to a self-referencing interferometer. A modified half wave plate is positioned downstream of the interferometer, which can be used in the position measuring apparatus. The modified half wave plate has its fast axis in one part arranged at 45° to the fast axis in another part diametrically opposite.
摘要:
An optical-coherence-tomography apparatus includes a light-source unit configured to emit light while changing a wavelength of the light; an optical interferometric system configured to split the light from the light-source unit into illuminating light to be applied to an object and reference light, and to generate interfering light from the illuminating light reflected by the object and the reference light; a photodetection unit configured to receive the interfering light, and an information-acquiring unit configured to acquire information on the object from the interfering light received by the photodetection unit. The light-source unit performs wavelength sweep by displacing a movable portion with an electrostatic force generated with the application of a voltage. The optical-coherence-tomography apparatus further includes a pull-in-detection unit configured to detect whether or not a pull-in effect is occurring on the movable portion of the light-source unit.
摘要:
Data measured by PS-OCT is corrected in a non-linear manner to enhance the quantitative analysis capability of PS-OCT and permit accurate quantitative diagnosis, including diagnosis of disease stage of lesions, as a useful means for computer diagnosis. Even when retardation per PS-OCT 1 contains error and becomes noise and its distribution is not normal or symmetrical around the true value, measured data is converted using a distribution conversion function obtained by analyzing the characteristics of noise via Monte Carlo simulation to remove the systematic error and estimate the true value otherwise buried in noise and thereby correct the PS-OCT 1 image more clearly.