摘要:
The invention relates to a multi-stage method for producing gas-filled microcapsules. In one stage of the method, the substance that forms the coat is polymerized. The microcapsules are formed in a physically and/or temporally separate stage, by means of a structuring process. The polymerization is carried out with moderate stirring, while the microcapsules are structured in dispersing conditions.
摘要:
The present invention relates to complexes which contain polycrystalline magnetic iron oxide particles in a pharmaceutically acceptable shell, and to the use of these compositions in magnetic particle imaging (MPI). Particular preference is given to the use of these compositions in examining the gastrointestinal tract, the vascular system of the heart and cranial components, in the diagnosis of arteriosclerosis, infarctions, and tumors and metastases, for example of the lymphatic system.
摘要:
The present invention relates to complexes which contain magnetic iron oxide particles in a pharmaceutically acceptable shell, said particles having a diameter of 20 nm to 1 μm with an overall particle diameter/core diameter ratio of less than 6, and to the use of these complexes in magnetic particle imaging (MPI). Particular preference is given to the use of these compositions in examining the gastrointestinal tract, the vascular system of the heart and cranial components, in the diagnosis of arteriosclerosis, infarctions, and tumors and metastases, for example of the lymphatic system.
摘要:
In the quantification of bodies, especially bubbles, in ultrasonic diagnosis, the problem exists that the concentration of bodies, especially bubbles, is often so high that the image data that is obtained relative to the visualization becomes saturated, such that a quantification is impossible. To solve this problem, it is proposed that the bodies that are contained in the sectional layers of an object under examination first be excited by means of ultrasound to produce characteristic signals and to pick up these signals, to form data sets from the signals, to convert the data sets into an image of the body arrangement in the object under examination and to determine the number of bodies therefrom, whereby at least two ultrasonic signal sets from overlapping sectional layers in the object under examination are picked up.