Abstract:
The present invention relates to an optical fiber for a fiber optic sensor, comprising a first optical grating adapted to operate over a first range of wavelengths; and at least one set of further gratings adapted to operate over a second range of wavelengths, each grating being adapted to operate over a portion of the second range; wherein, each grating within said set has an operating range that partially overlaps with at least one other such grating operating range. The invention also extends to a sensor system, and method, using such an optical fiber.
Abstract:
A wind turbine is arranged to operate in a fully-functional converter mode and a faulty-converter mode. A plurality of converters are arranged to share electric current in the fully-functional converter mode. The converters are dimensioned not only to operate at nominal active current but to provide an over-current margin to enable reactive current to be produced on top of the nominal active current in the fully-functional converter mode. In the fully-functional converter mode the converters are caused to produce reactive current on top of the nominal active current. In response to a fault of one or more of the converters, operation is changed from the fully-functional converter mode to the faulty-converter mode. In the faulty-converter mode, one or more other converters of the converter system are caused to produce additional active current by using their over-current margin to compensate at least partly for a reduction of active-current production due to the fault of one of the converters, and to reduce the reactive-current production by the other converter correspondingly.
Abstract:
The present invention relates to an optical fibre for a fibre optic sensor, comprising a first optical grating adapted to operate over a first range of wavelengths; and at least one set of further gratings adapted to operate over a second range of wavelengths, each grating being adapted to operate over a portion of the second range; wherein, each grating within said set has an operating range that partially overlaps with at least one other such grating operating range. The invention also extends to a sensor system, and method, using such an optical fibre.
Abstract:
A wind turbine is arranged to operate in a fully-functional converter mode and a faulty-converter mode. A plurality of converters are arranged to share electric current in the fully-functional converter mode. The converters are dimensioned not only to operate at nominal active current but to provide an over-current margin to enable reactive current to be produced on top of the nominal active current in the fully-functional converter mode. In the fully-functional converter mode the converters are caused to produce reactive current on top of the nominal active current. In response to a fault of one or more of the converters, operation is changed from the fully-functional converter mode to the faulty-converter mode. In the faulty-converter mode, one or more other converters of the converter system are caused to produce additional active current by using their over-current margin to compensate at least partly for a reduction of active-current production due to the fault of one of the converters, and to reduce the reactive-current production by the other converter correspondingly.
Abstract:
A sensor system for measuring an operating parameter of a wind turbine component is described. The fibre optic sensor system comprises a light source for outputting light in a predetermined range of wavelengths, and an optical fibre comprising a long Fibre Bragg Grating, extending continuously over a length of the optical fibre to provide a continuous measurement region in the optical fibre. The optical fibre is coupled to the wind turbine component such that the continuous measurement region is located at a region of the wind turbine component to be sensed, and such that the grating period at each location in the continuous measurement period is dependent upon the value of the operating parameter at that location. A light detector receives light from the optical fibre, and provides an output signal to the controller indicating the intensity of the received light; based on the detected light, a value for the operating parameter is determined.