Abstract:
An optical transmission device is provided. The optical transmission device is coupled between a first electronic device and a second electronic device, and includes a first optical transceiver module coupled to the first electronic device; a second optical transceiver module coupled to the second electronic device; and first and second optical fibers coupled between the first optical transceiver module and the second optical transceiver module, wherein the second optical transceiver module transmits an optical signal to the first optical transceiver module periodically when the second electronic device is idle for a first predetermined period.
Abstract:
A temperature-compensated laser driving circuit for driving a laser component is provided. The temperature-compensated laser driving circuit includes: a temperature compensation circuit, configured to generate a second current based on a first current and a temperature-independent current; and a modulation current generating circuit, configured to generate a modulation current based on the second current, and calibrate optical power output of the laser component based on the modulation current. The first current is proportional to the absolute temperature. The second current and the first current have a slope relative to the absolute temperature respectively, and the slope of the second current relative to the absolute temperature is larger than of the slope of the first current relative to the absolute temperature.
Abstract:
A phase detecting apparatus and a phase adjusting method are provided. Determine whether to output a phase adjusting control signal according to a first data sampling value, a second data sampling value and a third data sampling value that are successively generated, so as to adjust a phase of a sampling clock signal used to sample a data signal.
Abstract:
An optical transceiver module coupled to a device is provided. The optical transceiver module includes an electronic signal transmitting terminal coupled to a receiving terminal of the device, an electronic signal receiving terminal coupled to a transmitting terminal of the device, an optical signal receiving terminal coupled to the electronic signal transmitting terminal, and an optical signal transmitting terminal coupled to the electronic signal receiving terminal. When the optical transceiver module is at an normal operation state and the electronic signal receiving terminal does not receive any electronic signal over a first predetermined time period, the optical transceiver module enters a idle detection state to make the electronic signal transmitting terminal to perform a receiver termination detection to the device to determine whether the device is coupled to the optical transceiver module. At the idle detection state, the optical signal transmitting terminal transmits the optical signal continuously.