Abstract:
A USB chipset coupled between a first device and a second device is provided. A data processing unit is coupled to the first device and generates a plurality of transmission information according to first information provided by the first device. A transmitting unit is coupled to the data processing unit to transmit the transmission information to the second device and includes a converting module, a first output driving module, a second output driving module, and a transmitting-terminal selecting module. The converting module is coupled to the data processing unit to receive the transmission information in parallel and serially outputs the transmission information. The first output driving module is coupled to a first pin set. The second output driving module is coupled to a second pin set. The transmitting-terminal selecting module is coupled between the converting module and the first and second output driving modules.
Abstract:
The USB chipset including a data processing unit, a transmitting unit, a first pin set and a second pin set is provided. The data processing unit generates a plurality of transmission information according to first information provided by a first device. The transmitting unit processes the transmission information to generate an output signal. The first pin set is configured to transmit the output signal to a second device. The second pin set is configured to transmit the output signal to the second device. When the first pin set transmits the output signal to the second device, the second pin set does not transmit the output signal to the second device. When the second pin set transmits the output signal to the second device, the first pin set does not transmit the output signal to the second device.
Abstract:
A transmission circuit including an equalizer circuit, a slicer circuit, a signal detection circuit, and a control circuit is provided. The equalizer circuit performs an equalizing operation on an input signal according to preset states to output an equalizing signal corresponding to each preset state. The slicer circuit performs a slicing operation on the equalizing signal to output a slicing signal. The signal detection circuit detects and compares the equalizing signal and the slicing signal and accordingly adjusts the equalizer circuit to one of the preset states. The control circuit receives the slicing signal corresponding to each preset state, compares the slicing signal corresponding to each preset state with a plurality of signal patterns to generate a comparison result, and selects one of the preset states according to the comparison result, such that the control circuit let the equalizer circuit perform the equalizing operation according to the selected preset state.
Abstract:
A high speed internal hysteresis comparator is provided. Impedance supply units are disposed at control terminals of transistors of an active load of a differential amplifier of the high-speed hysteresis comparator, such that a gain when the transistors operate in an active region and a responding speed of the high-speed hysteresis comparator are increased.
Abstract:
A temperature-compensated laser driving circuit for driving a laser component is provided. The temperature-compensated laser driving circuit includes: a temperature compensation circuit, configured to generate a second current based on a first current and a temperature-independent current; and a modulation current generating circuit, configured to generate a modulation current based on the second current, and calibrate optical power output of the laser component based on the modulation current. The first current is proportional to the absolute temperature. The second current and the first current have a slope relative to the absolute temperature respectively, and the slope of the second current relative to the absolute temperature is larger than of the slope of the first current relative to the absolute temperature.
Abstract:
A phase detecting apparatus and a phase adjusting method are provided. Determine whether to output a phase adjusting control signal according to a first data sampling value, a second data sampling value and a third data sampling value that are successively generated, so as to adjust a phase of a sampling clock signal used to sample a data signal.
Abstract:
An optical transceiver module coupled to a device is provided. The optical transceiver module includes an electronic signal transmitting terminal coupled to a receiving terminal of the device, an electronic signal receiving terminal coupled to a transmitting terminal of the device, an optical signal receiving terminal coupled to the electronic signal transmitting terminal, and an optical signal transmitting terminal coupled to the electronic signal receiving terminal. When the optical transceiver module is at an normal operation state and the electronic signal receiving terminal does not receive any electronic signal over a first predetermined time period, the optical transceiver module enters a idle detection state to make the electronic signal transmitting terminal to perform a receiver termination detection to the device to determine whether the device is coupled to the optical transceiver module. At the idle detection state, the optical signal transmitting terminal transmits the optical signal continuously.
Abstract:
A transmission circuit including an equalizer circuit, a slicer circuit, a signal detection circuit, and a control circuit is provided. The equalizer circuit performs an equalizing operation on an input signal according to preset states to output an equalizing signal corresponding to each preset state. The slicer circuit performs a slicing operation on the equalizing signal to output a slicing signal. The signal detection circuit detects and compares the equalizing signal and the slicing signal and accordingly adjusts the equalizer circuit to one of the preset states. The control circuit receives the slicing signal corresponding to each preset state, compares the slicing signal corresponding to each preset state with a plurality of signal patterns to generate a comparison result, and selects one of the preset states according to the comparison result, such that the control circuit let the equalizer circuit perform the equalizing operation according to the selected preset state.