Abstract:
A variable optical filter is disclosed including a bandpass filter and a blocking filter. The bandpass filter includes a stack of alternating first and second layers, and the blocking filter includes a stack of alternating third and fourth layers. The first, second and fourth materials each comprise different materials, so that a refractive index of the first material is smaller than a refractive index of the second material, which is smaller than a refractive index of the fourth material; while an absorption coefficient of the second material is smaller than an absorption coefficient of the fourth material. The materials can be selected to ensure high index contrast in the blocking filter and low optical losses in the bandpass filter. The first to fourth layers can be deposited directly on a photodetector array.
Abstract:
A variable optical filter is disclosed including a bandpass filter and a blocking filter. The bandpass filter includes a stack of alternating first and second layers, and the blocking filter includes a stack of alternating third and fourth layers. The first, second and fourth materials each comprise different materials, so that a refractive index of the first material is smaller than a refractive index of the second material, which is smaller than a refractive index of the fourth material; while an absorption coefficient of the second material is smaller than an absorption coefficient of the fourth material. The materials can be selected to ensure high index contrast in the blocking filter and low optical losses in the bandpass filter. The first to fourth layers can be deposited directly on a photodetector array.
Abstract:
A variable optical filter is disclosed including a bandpass filter and a blocking filter. The bandpass filter includes a stack of alternating first and second layers, and the blocking filter includes a stack of alternating third and fourth layers. The first, second and fourth materials each comprise different materials, so that a refractive index of the first material is smaller than a refractive index of the second material, which is smaller than a refractive index of the fourth material; while an absorption coefficient of the second material is smaller than an absorption coefficient of the fourth material. The materials can be selected to ensure high index contrast in the blocking filter and low optical losses in the bandpass filter. The first to fourth layers can be deposited directly on a photodetector array.
Abstract:
An optical sensor assembly is provided in which a dark mirror coating is used to suppress stray light in the form of both unwanted reflections from non-optically active regions of the sensor assembly surface and unwanted transmission of light into the surface region of the sensor assembly. The sensor assembly includes an image sensor positioned in a substrate adjacent to substrate surface areas that are not optically active. A dark mirror coating covering those surface areas significantly reduces reflections from non-optically active surface regions and improves image sensor performance in terms of signal-to-noise ratio and reduction in the appearance of “ghost” images, in turn enhancing the accuracy and precision of the sensor. The dark mirror coating may in the alternative, or in addition, be positioned underneath an optical filter, depending on the structure, material, and requirements of a particular sensor assembly.
Abstract:
A sheet including a reflector having a first surface, a second surface opposite the first surface, and a third surface; a first selective light modulator layer external to of the first surface of the reflector; and a second selective light modulator layer external to the second surface of the reflector; wherein the third surface of the reflector is open is disclosed. A method of making a sheet is also disclosed.
Abstract:
An optical filter, a sensor device including the optical filter, and a method of fabricating the optical filter are provided. The optical filter includes one or more dielectric layers and one or more metal layers stacked in alternation. The metal layers are intrinsically protected by the dielectric layers. In particular, the metal layers have tapered edges that are protectively covered by one or more of the dielectric layers.
Abstract:
An optical sensor assembly is provided in which a dark mirror coating is used to suppress stray light in the form of both unwanted reflections from non-optically active regions of the sensor assembly surface and unwanted transmission of light into the surface region of the sensor assembly. The sensor assembly includes an image sensor positioned in a substrate adjacent to substrate surface areas that are not optically active. A dark mirror coating covering those surface areas significantly reduces reflections from non-optically active surface regions and improves image sensor performance in terms of signal-to-noise ratio and reduction in the appearance of “ghost” images, in turn enhancing the accuracy and precision of the sensor. The dark mirror coating may in the alternative, or in addition, be positioned underneath an optical filter, depending on the structure, material, and requirements of a particular sensor assembly.
Abstract:
An article including a stack of layers including a high refractive index layer and a low refractive index layer; wherein at least one layer of the stack includes a wavelength selective absorbing material; and wherein the stack of layers has a transparent region with an edge at a wavelength in which light is absorbed by the wavelength selective absorbing material, and a reflection band with an edge at a wavelength in which light is reflected is disclosed. Compositions and optical devices including the article are also disclosed. Additionally, there is disclosed a method of making the article, the composition, and the optical device.
Abstract:
A variable optical filter is disclosed including a bandpass filter and a blocking filter. The bandpass filter includes a stack of alternating first and second layers, and the blocking filter includes a stack of alternating third and fourth layers. The first, second and fourth materials each comprise different materials, so that a refractive index of the first material is smaller than a refractive index of the second material, which is smaller than a refractive index of the fourth material; while an absorption coefficient of the second material is smaller than an absorption coefficient of the fourth material. The materials can be selected to ensure high index contrast in the blocking filter and low optical losses in the bandpass filter. The first to fourth layers can be deposited directly on a photodetector array.
Abstract:
An article including a magnetic-containing layer having a first surface and a second surface opposite the first; a first reflector layer external to the first surface of the magnetic-containing layer; a second reflector layer external to the second surface of the magnetic-containing layer; a first selective light modulator layer external to the first reflector layer; a second selective light modulator layer external to the second reflector layer; a first absorber layer external to the first selective light modulator layer; and a second absorber layer external to the second selective light modulator layer; wherein at least one of the first and second selective light modulator layers comprises at least one of a curing agent, and at least one coating aid is disclosed. Methods of making the disclosed article are also disclosed.