Abstract:
A storage migration engine and a recovery manager are provided that enable failover operations to be performed in situations where storage migration and array-based replication are involved. The storage migration engine stores information related to storage migrations directly into a source datastore and a destination datastore, which are then replicated over to a recovery site. The recovery manager uses the information stored in the recovered datastores to select which instance of virtual machine data is to be used to fail over to a virtual machine at the recovery site.
Abstract:
Techniques to process virtual machine objects through multistep workflows in a computer system are described. In an example, a method of processing virtual machine objects through a workflow having a plurality of ordered steps in a computer system includes executing the workflow on computing resources of the computer system using the virtual machine objects as parametric input, where the computing resources: divide the virtual machine objects into workgroups; perform instances of a step of the workflow in parallel on the workgroups as the workgroups complete a prior step in the workflow; and execute an agent to delegate the workgroups to, and receive results from, the instances of the step as the workflow is executed.
Abstract:
Exemplary methods, apparatuses, and systems include determining that at least a portion of a protected site has become unavailable. A first logical storage device within underlying storage of a recovery site is determined to be a stretched storage device stretched across the protected and recovery sites. A failover workflow is initiated in response to the unavailability of the protected site, wherein the failover workflow includes transmitting an instruction to the underlying storage to isolate the first logical storage device from a corresponding logical storage device within the protected site.
Abstract:
A cloud availability manager configured to execute a recovery workflow that fails over one or more virtual machines (VMs) to and from a cloud computing system. In doing so, the cloud availability manager typically performs multiple operations for each VMs. The operations involve making several application programming interface (API) calls to component APIs of management components within the cloud computing system. To avoid bringing down the entire cloud infrastructure, the cloud availability manager throttles the API calls to other components while executing a recovery workflow. The throttling spans multiple instances (nodes) of the cloud availability manager and involves cooperation from the other management components to ensure the throttling is fair across all tenants of the cloud computing system.
Abstract:
A recovery manager discovers replication properties of datastores stored in a storage array, and assigns custom tags to the datastores indicating the discovered replication properties. A user may create storage profiles with rules using any combination of these custom tags describe replication properties. The recovery manager protects a storage profile using a policy-based protection mechanism. Whenever a new replicated datastore is provisioned, the datastore is dynamically tagged with the replication properties of their underlying storage, and will belong to one or more storage profiles. The recovery manager monitors storage profiles for new datastores and protects the newly provisioned datastore dynamically, including any or all of the VMs stored in the datastore.
Abstract:
To prevent a user from initiating potentially dangerous virtual machine migrations, a storage migration engine is configured to be aware of replication properties for a source datastore and a destination datastore. The replication properties are obtained from a storage array configured to provide array-based replication. A recovery manager discovers the replication properties of the datastores stored in the storage array, and assigns custom tags to the datastores indicating the discovered replication properties. When storage migration of a virtual machine is requested, the storage migration engine performs or prevents the storage migration based on the assigned custom tags.
Abstract:
Exemplary methods, apparatuses, and systems include a recovery manager receiving selection of a storage profile to be protected. The storage profile is an abstraction of a set of one or more logical storage devices that are treated as a single entity based upon common storage capabilities. In response to the selection of the storage profile to be protected, a set of virtual datacenter entities associated with the storage profile is added to a disaster recovery plan to automate a failover of the set of virtual datacenter entities from a protection site to a recovery site. The set of one or more virtual datacenter entities includes one or more virtual machines, one or more logical storage devices, or a combination of virtual machines and logical storage devices. The set of virtual datacenter entities is expandable and interchangeable with other virtual datacenter entities.
Abstract:
Examples maintain consistency of writes for a plurality of VMs during live migration of the plurality from a source host to a destination host. The disclosure intercepts I/O writes to a migrated VM at a destination host and mirrors the I/O writes back to the source host. This “reverse replication” ensures that the CG of the source host is up to date, and that the source host is safe to fail back to if the migration fails.
Abstract:
Exemplary methods, apparatuses, and systems include a recovery manager receiving selection of a storage profile to be protected. The storage profile is an abstraction of a set of one or more logical storage devices that are treated as a single entity based upon common storage capabilities. In response to the selection of the storage profile to be protected, a set of virtual datacenter entities associated with the storage profile is added to a disaster recovery plan to automate a failover of the set of virtual datacenter entities from a protection site to a recovery site. The set of one or more virtual datacenter entities includes one or more virtual machines, one or more logical storage devices, or a combination of virtual machines and logical storage devices. The set of virtual datacenter entities is expandable and interchangeable with other virtual datacenter entities.
Abstract:
Mapping computer resources to consumers in a computer system is described. In an example, a method of mapping computer resources to consumers in a computer system includes: receiving tags assigned to the computer resources at a resource manager executing in the computer system, where the resource manager: identifies a first tag assigned to a first computer resource; determines whether a first consumer is associated with the first tag; enables the first consumer to access the first computer resource if the first consumer is associated with the first tag; and prevents the first consumer from accessing the first computer resource if the first consumer is not associated with the first tag.