Abstract:
A server-based desktop-virtual machines architecture may be extended to a client machine. In one embodiment, a user desktop is remotely accessed from a client system. The remote desktop is generated by a first virtual machine running on a server system, which may comprise one or more server computers. During execution of the first virtual machine, writes to a corresponding virtual disk are directed to a delta disk file or redo log. A copy of the virtual disk is created on the client system. When a user decides to “check out” his or her desktop, the first virtual machine is terminated (if it is running) and a copy of the delta disk is created on the client system. Once the delta disk is present on the client system, a second virtual machine can be started on the client system using the virtual disk and delta disk to provide local access to the user's desktop at the client system. This allows the user to then access his or her desktop without being connected to a network.
Abstract:
A server-based desktop-virtual machines architecture may be extended to a client machine. In one embodiment, a user desktop is remotely accessed from a client system. The remote desktop is generated by a first virtual machine running on a server system, which may comprise one or more server computers. During execution of the first virtual machine, writes to a corresponding virtual disk are directed to a delta disk file or redo log. A copy of the virtual disk is created on the client system. When a user decides to “check out” his or her desktop, the first virtual machine is terminated (if it is running) and a copy of the delta disk is created on the client system. Once the delta disk is present on the client system, a second virtual machine can be started on the client system using the virtual disk and delta disk to provide local access to the user's desktop at the client system. This allows the user to then access his or her desktop without being connected to a network.
Abstract:
A server-based desktop-virtual machines architecture may be extended to a client machine. In one embodiment, a user desktop is remotely accessed from a client system. The remote desktop is generated by a first virtual machine running on a server system, which may comprise one or more server computers. During execution of the first virtual machine, writes to a corresponding virtual disk are directed to a delta disk file or redo log. A copy of the virtual disk is created on the client system. When a user decides to “check out” his or her desktop, the first virtual machine is terminated (if it is running) and a copy of the delta disk is created on the client system. Once the delta disk is present on the client system, a second virtual machine can be started on the client system using the virtual disk and delta disk to provide local access to the user's desktop at the client system. This allows the user to then access his or her desktop without being connected to a network.
Abstract:
Methods, systems, and techniques for facilitating access to content stored remotely, for example, as part of a virtual machine infrastructure or elsewhere in a networked environment, using a uniform mechanism are provided. Example embodiments provide an Enhanced Virtual Desktop Management Server/System with a Content Abstraction Layer which enables users to access their data stored as part of a virtual machine environment, or replicated otherwise on a network, using a generic API. The API can be incorporated into a web browser or other third party interface to provide access to the users' data without needing to remote a bitmap representation of a virtual desktop display. Accordingly, users can access their data, applications, and settings regardless of the type of access device and regardless of whether the corresponding virtual desktop is running in the data center, provisioned in the datacenter but running on a client device, or not running at all.
Abstract:
Methods, systems, and techniques for facilitating access to content stored remotely, for example, as part of a virtual machine infrastructure or elsewhere in a networked environment, using a uniform mechanism are provided. Example embodiments provide an Enhanced Virtual Desktop Management Server/System with a Content Abstraction Layer which enables users to access their data stored as part of a virtual machine environment, or replicated otherwise on a network, using a generic API. The API can be incorporated into a web browser or other third party interface to provide access to the users' data without needing to remote a bitmap representation of a virtual desktop display. Accordingly, users can access their data, applications, and settings regardless of the type of access device and regardless of whether the corresponding virtual desktop is running in the data center, provisioned in the datacenter but running on a client device, or not running at all.
Abstract:
A server-based desktop-virtual machines architecture may be extended to a client machine. In one embodiment, a user desktop is remotely accessed from a client system. The remote desktop is generated by a first virtual machine running on a server system, which may comprise one or more server computers. During execution of the first virtual machine, writes to a corresponding virtual disk are directed to a delta disk file or redo log. A copy of the virtual disk is created on the client system. When a user decides to “check out” his or her desktop, the first virtual machine is terminated (if it is running) and a copy of the delta disk is created on the client system. Once the delta disk is present on the client system, a second virtual machine can be started on the client system using the virtual disk and delta disk to provide local access to the user's desktop at the client system. This allows the user to then access his or her desktop without being connected to a network.
Abstract:
A server-based desktop-virtual machines architecture may be extended to a client machine. In one embodiment, a user desktop is remotely accessed from a client system. The remote desktop is generated by a first virtual machine running on a server system, which may comprise one or more server computers. During execution of the first virtual machine, writes to a corresponding virtual disk are directed to a delta disk file or redo log. A copy of the virtual disk is created on the client system. When a user decides to “check out” his or her desktop, the first virtual machine is terminated (if it is running) and a copy of the delta disk is created on the client system. Once the delta disk is present on the client system, a second virtual machine can be started on the client system using the virtual disk and delta disk to provide local access to the user's desktop at the client system. This allows the user to then access his or her desktop without being connected to a network.
Abstract:
Methods, systems, and techniques for facilitating access to content stored remotely, for example, as part of a virtual machine infrastructure or elsewhere in a networked environment, using a uniform mechanism are provided. Example embodiments provide an Enhanced Virtual Desktop Management Server/System with a Content Abstraction Layer which enables users to access their data stored as part of a virtual machine environment, or replicated otherwise on a network, using a generic API. The API can be incorporated into a web browser or other third party interface to provide access to the users' data without needing to remote a bitmap representation of a virtual desktop display. Accordingly, users can access their data, applications, and settings regardless of the type of access device and regardless of whether the corresponding virtual desktop is running in the data center, provisioned in the datacenter but running on a client device, or not running at all.
Abstract:
A server-based desktop-virtual machines architecture may be extended to a client machine. In one embodiment, a user desktop is remotely accessed from a client system. The remote desktop is generated by a first virtual machine running on a server system, which may comprise one or more server computers. During execution of the first virtual machine, writes to a corresponding virtual disk are directed to a delta disk file or redo log. A copy of the virtual disk is created on the client system. When a user decides to “check out” his or her desktop, the first virtual machine is terminated (if it is running) and a copy of the delta disk is created on the client system. Once the delta disk is present on the client system, a second virtual machine can be started on the client system using the virtual disk and delta disk to provide local access to the user's desktop at the client system. This allows the user to then access his or her desktop without being connected to a network.
Abstract:
A server-based desktop-virtual machines architecture may be extended to a client machine. In one embodiment, a user desktop is remotely accessed from a client system. The remote desktop is generated by a first virtual machine running on a server system, which may comprise one or more server computers. During execution of the first virtual machine, writes to a corresponding virtual disk are directed to a delta disk file or redo log. A copy of the virtual disk is created on the client system. When a user decides to “check out” his or her desktop, the first virtual machine is terminated (if it is running) and a copy of the delta disk is created on the client system. Once the delta disk is present on the client system, a second virtual machine can be started on the client system using the virtual disk and delta disk to provide local access to the user's desktop at the client system. This allows the user to then access his or her desktop without being connected to a network.