Abstract:
In an example embodiment, an in-phase recombinant waveguide combiner/divider device can comprise: a single waveguide input; N waveguide outputs, wherein N is an integer greater than 2; a first waveguide dividing portion; a second waveguide dividing portion; a third waveguide dividing portion; and a waveguide combining portion. The waveguide combining portion can be configured to combine two signals that are each respectively received from the second waveguide dividing portion and third waveguide dividing portion. In general an in-phase recombinant waveguide combiner/divider can comprise more junctions than output ports of a conservative power divider network structure. In an example embodiment, for a N-way waveguide power divider, there can be at least N+1 waveguide junctions.
Abstract:
A method, system, and device relating to a broad-band fragmented aperture tile and antenna system are disclosed. In one exemplary embodiment, an aperture tile comprises a plurality of unit cells. The plurality of unit cells individually comprise a driven radiating element layer, a module layer having a printed circuit board, wherein the module layer comprises one or more of a time delay module, a radio frequency distribution module, a radio frequency module, or a digital signal processor. Furthermore the aperture tile is coupled to a cold plate configured for heat transfer.
Abstract:
In an example embodiment, an in-phase H-plane T-junction can comprise: a first waveguide port; a second waveguide port; a third waveguide port, wherein the third waveguide port can be a common port; and an E-plane septum. The first, second, and third waveguide ports can be in the H-plane and can be each connected to each other in a T configuration. The T-junction can be configured such that microwave signals in a first band can be in-phase with each other at the first and second waveguide ports, and microwave signals in a second band can be in-phase with each other at the first and second waveguide ports. The H-plane T-junction can be at least one of a power combiner and a power divider.
Abstract:
In an example embodiment, an azimuth combiner comprises: a septum layer comprising a plurality of septum dividers; first and second housing layers attached to first and second sides of the septum layer; a linear array of ports on a first end of the combiner; wherein the first and second housing layers each comprise waveguide H-plane T-junctions; wherein the waveguide T-junctions can be configured to perform power dividing/combining; and wherein the septum layer evenly bisects each port of the linear array of ports. A stack of such azimuth combiners can form a two dimensional planar array of ports to which can be added a horn aperture layer, and a grid layer, to form a dual-polarized, dual-BFN, dual-band antenna array.
Abstract:
In an example embodiment, an azimuth combiner comprises: a septum layer comprising a plurality of septum dividers; first and second housing layers attached to first and second sides of the septum layer; a linear array of ports on a first end of the combiner; wherein the first and second housing layers each comprise waveguide H-plane T-junctions; wherein the waveguide T-junctions can be configured to perform power dividing/combining; and wherein the septum layer evenly bisects each port of the linear array of ports. A stack of such azimuth combiners can form a two dimensional planar array of ports to which can be added a horn aperture layer, and a grid layer, to form a dual-polarized, dual-BFN, dual-band antenna array.
Abstract:
In an example embodiment, an in-phase H-plane T-junction can comprise: a first waveguide port; a second waveguide port; a third waveguide port, wherein the third waveguide port can be a common port; and an E-plane septum. The first, second, and third waveguide ports can be in the H-plane and can be each connected to each other in a T configuration. The T-junction can be configured such that microwave signals in a first band can be in-phase with each other at the first and second waveguide ports, and microwave signals in a second band can be in-phase with each other at the first and second waveguide ports. The H-plane T-junction can be at least one of a power combiner and a power divider.
Abstract:
In an example embodiment, an in-phase recombinant waveguide combiner/divider device can comprise: a single waveguide input; N waveguide outputs, wherein N is an integer greater than 2; a first waveguide dividing portion; a second waveguide dividing portion; a third waveguide dividing portion; and a waveguide combining portion. The waveguide combining portion can be configured to combine two signals that are each respectively received from the second waveguide dividing portion and third waveguide dividing portion. In general an in-phase recombinant waveguide combiner/divider can comprise more junctions than output ports of a conservative power divider network structure. In an example embodiment, for a N-way waveguide power divider, there can be at least N+1 waveguide junctions.
Abstract:
In an example embodiment, a waveguide device comprises: a first common waveguide; a polarizer section, the polarizer section including a conductive septum dividing the first common waveguide into a first divided waveguide portion and a second waveguide divided portion; a second waveguide coupled to the first divided waveguide portion of the polarizer section; a third waveguide coupled to the second divided waveguide portion of the polarizer section; and a dielectric insert. The dielectric insert includes a first dielectric portion partially filling the polarizer section. The conductive septum and the dielectric portion convert a signal between a polarized state in the first common waveguide and a first polarization component in the second waveguide and a second polarization component in the third waveguide.
Abstract:
In an example embodiment, a waveguide device comprises: a first common waveguide; a polarizer section, the polarizer section including a conductive septum dividing the first common waveguide into a first divided waveguide portion and a second waveguide divided portion; a second waveguide coupled to the first divided waveguide portion of the polarizer section; a third waveguide coupled to the second divided waveguide portion of the polarizer section; and a dielectric insert. The dielectric insert includes a first dielectric portion partially filling the polarizer section. The conductive septum and the dielectric portion convert a signal between a polarized state in the first common waveguide and a first polarization component in the second waveguide and a second polarization component in the third waveguide.
Abstract:
In an example embodiment, a waveguide device comprises: a first common waveguide; a polarizer section, the polarizer section including a conductive septum dividing the first common waveguide into a first divided waveguide portion and a second waveguide divided portion; a second waveguide coupled to the first divided waveguide portion of the polarizer section; a third waveguide coupled to the second divided waveguide portion of the polarizer section; and a dielectric insert. The dielectric insert includes a first dielectric portion partially filling the polarizer section. The conductive septum and the dielectric portion convert a signal between a polarized state in the first common waveguide and a first polarization component in the second waveguide and a second polarization component in the third waveguide.