摘要:
A new method of forming shallow trench isolations has been described. A silicon semiconductor substrate is provided. A silicon nitride layer is deposited overlying the substrate. A polysilicon layer is deposited overlying the silicon nitride layer. An oxidation mask is deposited overlying the polysilicon layer. The oxidation mask, polysilicon layer, silicon nitride layer, and the silicon semiconductor substrate are patterned to form trenches for planned shallow trench isolations. The silicon semiconductor substrate exposed within the trenches is oxidized to form an oxide liner layer within the trenches wherein the oxidation mask prevents oxidation of the polysilicon layer. Thereafter the oxidation mask is removed. A trench oxide layer is deposited overlying the liner oxide layer and filling the trenches. The trench oxide layer and the polysilicon layer are polished down stopping at the silicon nitride layer with a polishing selectivity of oxide to polysilicon to nitride of 4:100:1 wherein dishing is avoided to complete shallow trench isolations in the manufacture of an integrated circuit device.
摘要:
A new method of copper damascene metallization utilizing an additional oxide layer between the nitride and the barrier layers to prevent dishing of the copper line after CMP is described. An insulating layer is provided covering semiconductor device structures in and on a semiconductor substrate. A polish stop layer is deposited overlying the insulating layer. An oxide layer is deposited overlying the polish stop layer. An opening is etched through the oxide layer, the polish stop layer, and the insulating layer to one of the semiconductor device structures. A barrier metal layer is deposited over the surface of the oxide layer and within the opening. A copper layer is deposited over the surface of the barrier metal layer. The copper layer and the barrier metal layer not within the opening are polished away wherein the barrier metal layer polishes more slowly than the copper layer whereby dishing of the copper layer occurs. Thereafter, the oxide layer is polished away stopping at the polish stop layer wherein the oxide layer polishes more quickly than the copper layer whereby the dishing of the copper layer is removed and whereby a hump is formed on the copper layer after the oxide layer is completely polished away. The copper layer is overpolished to remove the hump to complete copper damascene metallization in the fabrication of an integrated circuit.
摘要:
A method of manufacturing a shallow trench isolation using a polishing step with reduced dishing. A pad layer, a polish stop layer, a buffer layer and a hard mask layer are formed over a substrate. The hard mask layer has a hard mask opening. We etch a trench opening in the buffer layer, the polish stop layer, the pad layer and form a trench in the substrate using the hard mask layer as an etch mask. We form an oxide trench liner layer along the sidewalls of the trench and an oxide buffer liner layer on the sidewalls of the buffer layer using a thermal oxidation. The hard mask layer prevents the oxidation of the top surface of the buffer layer during the oxidation of the oxide trench liner. This prevents the buffer layer from being consumed by the oxidation and leaves the buffer layer to act in the subsequent chemical-mechanical polish (CMP) step. Next, an insulating layer is formed at least partially filling the trench. The insulating layer is chemical-mechanical polished using the polish stop layer as a stop layer. The buffer layer acts to prevent field oxide dishing during the chemical-mechanical polish.
摘要:
A method and apparatus for shallow trench isolation. First, a layer of silicon nitride (SiN) is deposited over a semiconductor substrate. A layer of polysilicon is then deposited over the silicon nitride layer. A layer of tetraethylorthosilicate (TEOS) is deposited over the polysilicon layer. Mask and etch steps are performed to form an opening that extends through the TEOS layer and through the polysilicon layer. An etch step is then performed to etch the exposed side surfaces of the polysilicon layer. Thereby, the exposed side surfaces of the polysilicon layer are moved laterally. An etch step is then performed so as to form a trench that extends into the semiconductor substrate. Dielectric material is deposited such that the dielectric material fills the trench and fills the opening that extends through the polysilicon layer and the silicon nitride layer. The substrate is then polished using a chemical mechanical polishing process. The chemical mechanical polishing process removes the polysilicon layer and forms a plug of dielectric material that fills the trench. The plug of dielectric material has a top surface that is planar with respect to the top of the silicon nitride layer.
摘要:
A new method of forming MOS transistors has been achieved. A pad oxide layer is grown. A silicon nitride layer is deposited. Trenches are etched for planned STI. A trench liner is grown inside of the trenches. A trench oxide layer is deposited filling the trenches. The trench oxide layer is polished down to complete the STI. The same silicon nitride layer is patterned to form dummy gates. A gate liner layer is deposited. Ions are implanted to form lightly doped drain junctions. Sidewall spacers are formed adjacent to the dummy gate electrodes and the shallow trench isolations. Ions are implanted to form the drain and source junctions. An epitaxial silicon layer is grown overlying the source and drain junctions. A metal layer is deposited. The epitaxial silicon layer is converted into sulicide to form silicided source and drain contacts. An interlevel dielectric layer is deposited and polished down to the dummy gates. The dummy gates are etched away to form openings for the planned transistor gates. A gate oxide layer is deposited lining the transistor gate openings. A gate electrode layer is deposited to fill the transistor gate openings. The gate electrode layer is patterned to complete the transistor gates.
摘要:
A method for planarizing metal plugs for device interconnections. The process begins by providing a semiconductor structure with at least one device thereon. A dielectric layer is formed over the device and the semiconductor structure. A first barrier metal layer is formed on the dielectric layer, and a sacrificial oxide layer is formed on the first barrier metal layer. The sacrificial oxide layer, the first barrier metal layer, and the dielectric layer are patterned to form contact openings. A second barrier metal layer is formed over the semiconductor structure, and a metal contact layer is formed on the second barrier metal layer. The metal contact layer and the second barrier metal layer are planarized using a first chemical mechanical polishing process and the sacrificial oxide layer is removed. The metal contact layer and the first barrier metal layer are planarized using a second chemical mechanical polishing process.
摘要:
A new method of metal plug metallization utilizing a sacrificial high polishing rate layer to prevent dishing and metal residues after CMP is described. An oxide layer is provided overlying semiconductor device structures in and on a semiconductor substrate. A sacrificial high polishing rate (HPR) layer is deposited overlying the oxide layer. An opening is etched through the HPR layer and the oxide layer to one of the semiconductor device structures. A barrier layer and a metal layer are deposited over the surface of the HPR layer and within the opening. The metal layer, barrier layer, and HPR layer overlying the oxide layer are polished away by CMP. The polishing rate of the HPR layer is higher than that of the metal layer with the result that after the HPR layer is completely removed, the metal layer remaining within the opening has a convex shape. The oxide layer is over-polished until endpoint detection is received. Since the metal polishing rate is higher than the oxide polishing rate, the convex shape is made substantially planar during the over-polishing to complete metal plug metallization in the fabrication of an integrated circuit.
摘要:
FIG. 1 is a front, top perspective view of a switch portable dock showing my new design. FIG. 2 is a front view thereof; FIG. 3 is a rear view thereof; FIG. 4 is a left side view thereof; FIG. 5 is a right side view thereof; FIG. 6 is a top view thereof; FIG. 7 is a bottom view thereof; FIG. 8 is a rear, bottom perspective view; and, FIG. 9 is a front perspective view thereof, showing the switch portable dock in an open state of use. The broken lines in the drawings depict portions of the switch portable dock that form no part of the claimed design.
摘要:
An example device includes a U-shaped body to be placed around a guide on which a scanner carriage is to be guided. A fixed leg of the U-shaped body is attached to a linearly translatable scanner carriage. A free leg of the U-shaped body is not attached to the scanner carriage and has inward facing ribs. The ribs on the free leg of the U-shaped body are positioned to come into contact with the guide to align the scanner carriage with the guide.
摘要:
Methods and systems are provided for improved data packet transmission in a network bridge. Separate data packets received from a plurality of automation components are aggregated into a single data packet stream. The data packet stream is transmitted to another network node, for example, another network bridge.