Abstract:
FIG. 1 is a perspective view of a laundry basket showing my new design; FIG. 2 is a front elevational view thereof; FIG. 3 is a rear elevational view thereof; FIG. 4 is a left side elevational view thereof; FIG. 5 is a right side elevational view thereof; FIG. 6 is a top plan view thereof; FIG. 7 is a bottom plan view thereof; and, FIG. 8 is another perspective view thereof.
Abstract:
Superabsorbent particles having less than 1000 ppm non-solvent, a median size of from about 50 to about 2,000 micrometers, and containing nanopores having an average cross-sectional dimension of from about 10 to about 500 nanometers are provided. The superabsorbent particles exhibit a Vortex Time of about 80 seconds or less.
Abstract:
An example device includes a U-shaped body to be placed around a guide on which a scanner carriage is to be guided. A fixed leg of the U-shaped body is attached to a linearly translatable scanner carriage. A free leg of the U-shaped body is not attached to the scanner carriage and has inward facing ribs. The ribs on the free leg of the U-shaped body are positioned to come into contact with the guide to align the scanner carriage with the guide.
Abstract:
A hemodialysis device is described herein. An exemplary hemodialysis device includes an import tube, a dialysis tube, and an export tube. The dialysis tube includes an inner dialysis tube, a dialysis membrane and an outer dialysis tube. The inner dialysis tube is within the dialysis membrane, which is within the outer dialysis tube. An inlet and an outlet of the inner tube are disposed at a first end of the outer dialysis tube. The inlet of the inner dialysis tube is coupled to the import tube and the outlet of the inner dialysis tube is coupled to the export tube. The dialysis tube is inserted into an artery of a patient, and thereby performs hemodialysis within the body. Since the hemodialysis in performed within the artery instead of drawing blood out of the body, the hemodialysis device will minimally affect blood pressure, which is more economic and safe.
Abstract:
An apparatus to facilitate compute optimization is disclosed. The apparatus includes a plurality of processing units each comprising a plurality of execution units (EUs), wherein the plurality of EUs comprise a first EU type and a second EU type
Abstract:
In accordance with some embodiments, classification of input/output requests from a database to a storage system may be performed. Each input/output request may be associated with a database class, and each database class may be mapped to a quality of service policy. Thus, quality of service may be enforced such that different data blocks within the storage system of the database may be afforded appropriate quality of service.
Abstract:
Some embodiments are associated with an X-ray source configured to generate X-rays directed toward an object, wherein the X-ray source is to: (i) generate a first energy X-ray pulse, (ii) switch to generate a second energy X-ray pulse, and (iii) switch back to generate another first energy X-ray pulse. A detector may be associated with multiple image pixels, and the detector includes, for each pixel: an X-ray sensitive element to receive X-rays; a first storage element and associated switch to capture information associated with the first energy X-ray pulses; and a second storage element and associated switch to capture information associated with the second energy X-ray pulse. A controller may synchronize the X-ray source and detector.
Abstract:
An optical imaging lens includes: a first, second, third and fourth lens element, the first lens element has negative refractive power, the second lens element has an image-side surface with a concave part in a vicinity of the optical axis, the third lens element has positive refractive power, and has an object-side surface with a convex part in a vicinity of the optical axis, the fourth lens element has an image-side surface with a concave part in a vicinity of the optical axis, where the optical imaging lens set does not include any lens element with refractive power other than said first, second, third and fourth lens elements.
Abstract:
In accordance with some embodiments, spatial and temporal locality between threads executing on graphics processing units may be analyzed and tracked in order to improve performance. In some applications where a large number of threads are executed and those threads use common resources such as common data, affinity tracking may be used to improve performance by reducing the cache miss rate and to more effectively use relatively small-sized caches.
Abstract:
The present disclosure relates to a touch technology, and more particularly to a touch device and a fabrication method thereof. The touch device comprises a sensing area and a peripheral area. The touch device further comprises a sensing electrode layer, a shading layer, a signal transmission line layer, and a conductive layer. The sensing electrode layer extends from the sensing area to the peripheral area. The shading layer is disposed on the peripheral area to overlay the sensing electrode layer and has a through hole to expose a portion of the sensing electrode layer. The signal transmission line layer is disposed on the shading layer and does not cover the through hole. The conductive layer fills the through hole and electrically connects the sensing electrode layer. In addition, a fabrication method of a touch device is also provided.