Abstract:
Provided are cellulose esters useful for inhibiting solution crystallization of drugs. Specific polymers include cellulose esters of formula I: wherein n of the ω-carboxyalkanoyl group, is 3, 4, 6, or 8 to provide a ω-carboxyalkanoyl group chosen from succinoyl, glutaroyl, adipoyl, sebacyl, and suberyl groups; and wherein R is chosen from: a hydrogen atom; and an alkanoyl group chosen from acetyl, propionyl, butyryl, valeroyl, hexanoyl, nonanoyl, decanoyl, lauroyl, palmitoyl, and stearoyl groups; wherein there is a total degree of substitution of the alkanoyl group and the ω-carboxyalkanoyl group of at least 2.0; and wherein the polymer comprises m repeating units where n=1 to 1,000,000, or 10 to 100,000, or 100 to 1,000, such as 1 to 6,000. Embodiments further include compositions comprising cellulose esters and poorly water-soluble drugs, which compositions exhibit greater solubility and stability in solution as compared to the drugs alone.
Abstract:
Three-phase interleaved LLC and CLLC resonant converters, with integrated magnetics, are described. In various examples, the primary sides of the phases in the converters rely upon a half-bridge configuration and include resonant networks coupled to each other in delta-connected or common Y-node configurations. The secondary sides of the phases can rely upon a full-bridge configurations and are coupled in parallel. In one example, the transformers of the phases in the converters are integrated into one magnetic core. By changing the interleaving structure between the primary and secondary windings in the transformers, resonant inductors of the phases can also be integrated into the same magnetic core. A multi-layer PCB can be used as the windings for the integrated magnetics.
Abstract:
A variable direct current (DC) link power converter is described. In one example, the power converter includes a first converter stage configured to convert power from a power source to power at an intermediate link voltage and a second converter stage configured to convert the power at the intermediate link voltage to power for charging a battery. The power converter further includes a control system having an intermediate link voltage regulation control loop configured, in a first mode of operation, to regulate the intermediate link voltage through the first converter stage based on a voltage of the battery, and a ripple regulation control loop configured to sense a charging current for the battery and regulate a gain of the second converter stage based on the charging current to reduce ripple in the charging current. A new configuration of transformer suitable for use with the power converter is also described.
Abstract:
Three-phase interleaved LLC and CLLC resonant converters, with integrated magnetics, are described. In various examples, the primary sides of the phases in the converters rely upon a half-bridge configuration and include resonant networks coupled to each other in delta-connected or common Y-node configurations. The secondary sides of the phases can rely upon a full-bridge configurations and are coupled in parallel. In one example, the transformers of the phases in the converters are integrated into one magnetic core. By changing the interleaving structure between the primary and secondary windings in the transformers, resonant inductors of the phases can also be integrated into the same magnetic core. A multi-layer PCB can be used as the windings for the integrated magnetics.
Abstract:
A variable direct current (DC) link power converter is described. In one example, the power converter includes a first converter stage configured to convert power from a power source to power at an intermediate link voltage and a second converter stage configured to convert the power at the intermediate link voltage to power for charging a battery. The power converter further includes a control system having an intermediate link voltage regulation control loop configured, in a first mode of operation, to regulate the intermediate link voltage through the first converter stage based on a voltage of the battery, and a ripple regulation control loop configured to sense a charging current for the battery and regulate a gain of the second converter stage based on the charging current to reduce ripple in the charging current. A new configuration of transformer suitable for use with the power converter is also described.