摘要:
The invention comprises a charged particle beam injection method and apparatus used in conjunction with multi-axis charged particle radiation therapy of cancerous tumors. The negative ion beam source includes a negative ion beam source, vacuum system, an ion beam focusing lens, and/or a tandem accelerator. The negative ion beam source uses electric field lines for focusing a negative ion beam. The negative ion source plasma chamber includes a magnetic material, which provides a magnetic field barrier between a high temperature plasma chamber and a low temperature plasma region. The injection system vacuum system and a synchrotron vacuum system are separated by a conversion foil, where negative ions are converted to positive ions. The foil is sealed to the edges of the vacuum tube providing for a higher partial pressure in the injection system vacuum chamber and a lower pressure in the synchrotron vacuum system.
摘要:
The invention comprises a multi-axis charged particle irradiation method and apparatus. The multi-axis controls includes separate or independent control of one or more of horizontal position, vertical position, energy control, and intensity control of the charged particle irradiation beam. Optionally, the charged particle beam is additionally controlled in terms of timing. Timing is coordinated with patient respiration and/or patient rotational positioning. Combined, the system allows multi-axis and multi-field charged particle irradiation of tumors yielding precise and accurate irradiation dosages to a tumor with distribution of harmful proximal distal energy about the tumor.
摘要:
The invention comprises a patient positioning and/or repositioning system, such as a laying, semi-vertical, or seated patient positioning, alignment, and/or control method and apparatus used in conjunction with multi-axis charged particle radiation therapy. Patient positioning constraints optionally include one or more of: a seat support, a back support, a head support, an arm support, a knee support, and a foot support. One or more of the positioning constraints are preferably movable and/or under computer control for rapid positioning, repositioning, and/or immobilization of the patient. The system optionally uses an X-ray beam that lies in substantially the same path as a proton beam path of a particle beam cancer therapy system. The generated image is usable for: fine tuning body alignment relative to the proton beam path, to control the charged particle beam path to accurately and precisely target the tumor, and/or in system verification and validation.
摘要:
The invention comprises a multi-field charged particle irradiation method and apparatus. Radiation is delivered through an entry point into the tumor and Bragg peak energy is targeted to a distal or far side of the tumor from an ingress point. Delivering Bragg peak energy to the distal side of the tumor from the ingress point is repeated from multiple rotational directions. Preferably, beam intensity is proportional to radiation dose delivery efficiency. Preferably, the charged particle therapy is timed to patient respiration via control of charged particle beam injection, acceleration, extraction, and/or targeting methods and apparatus. Optionally, multi-axis control of the charged particle beam is used simultaneously with the multi-field irradiation. Combined, the system allows multi-field and multi-axis charged particle irradiation of tumors yielding precise and accurate irradiation dosages to a tumor with distribution of harmful irradiation energy about the tumor.
摘要:
The invention comprises a charged particle beam path coupling an injector, synchrotron accelerator, beam transport system, targeting system, and/or patient interface method and apparatus. Preferably, the injector comprises: a negative ion beam source, a two phase ion source vacuum system, an ion beam focusing lens, and/or a tandem accelerator. Preferably, the synchrotron comprises turning magnets, edge focusing magnets, magnetic field concentration magnets, winding and correction coils, flat magnetic field incident surfaces, and/or extraction elements. Preferably, the synchrotron, beam transport system, targeting system, and patient interface combine to allow multi-axis/multi-field irradiation, where multi-axis control comprises control of horizontal and vertical beam position, beam energy, and/or beam intensity and multi-field control comprises control of patient rotation and distribution of delivered energy in and about the tumor in a time controlled, targeted, accurate, precise, dosage controlled, and/or efficient manner.
摘要:
The invention comprises a charged particle beam injection method and apparatus used in conjunction with multi-axis charged particle radiation therapy of cancerous tumors. The negative ion beam source includes a negative ion beam source, vacuum system, an ion beam focusing lens, and/or a tandem accelerator. The negative ion beam source uses electric field lines for focusing a negative ion beam. The negative ion source plasma chamber includes a magnetic material, which provides a magnetic field barrier between a high temperature plasma chamber and a low temperature plasma region. The injection system vacuum system and a synchrotron vacuum system are separated by a conversion foil, where negative ions are converted to positive ions. The foil is sealed to the edges of the vacuum tube providing for a higher partial pressure in the injection system vacuum chamber and a lower pressure in the synchrotron vacuum system.
摘要:
The invention comprises a charged particle beam acceleration method and apparatus used as part of multi-axis charged particle radiation therapy of cancerous tumors. The accelerator includes a synchrotron having advances in turning magnets, edge focusing magnets, magnetic field concentration magnets, and extraction and intensity control elements that minimize the overall size of the synchrotron, provide a tightly controlled proton beam, directly reduce the size of required magnetic fields, directly reduces required operating power, and allows independent energy and intensity control of extracted charged particles from the synchrotron.
摘要:
The invention comprises a charged particle beam path coupling an injector, synchrotron accelerator, beam transport system, targeting system, and/or patient interface method and apparatus. Preferably, the injector comprises: a negative ion beam source, a two phase ion source vacuum system, an ion beam focusing lens, and/or a tandem accelerator. Preferably, the synchrotron comprises turning magnets, edge focusing magnets, magnetic field concentration magnets, winding and correction coils, flat magnetic field incident surfaces, and/or extraction elements. Preferably, the synchrotron, beam transport system, targeting system, and patient interface combine to allow multi-axis/multi-field irradiation, where multi-axis control comprises control of horizontal and vertical beam position, beam energy, and/or beam intensity and multi-field control comprises control of patient rotation and distribution of delivered energy in and about the tumor in a time controlled, targeted, accurate, precise, dosage controlled, and/or efficient manner.
摘要:
The invention comprises a multi-field charged particle irradiation method and apparatus. Radiation is delivered through an entry point into the tumor and Bragg peak energy is targeted to a distal or far side of the tumor from an ingress point. Delivering Bragg peak energy to the distal side of the tumor from the ingress point is repeated from multiple rotational directions. Preferably, beam intensity is proportional to radiation dose delivery efficiency. Preferably, the charged particle therapy is timed to patient respiration via control of charged particle beam injection, acceleration, extraction, and/or targeting methods and apparatus. Optionally, multi-axis control of the charged particle beam is used simultaneously with the multi-field irradiation. Combined, the system allows multi-field and multi-axis charged particle irradiation of tumors yielding precise and accurate irradiation dosages to a tumor with distribution of harmful irradiation energy about the tumor.
摘要:
The invention comprises a charged particle beam acceleration method and apparatus used as part of multi-axis charged particle radiation therapy of cancerous tumors. The accelerator includes a synchrotron having advances in turning magnets, edge focusing magnets, magnetic field concentration magnets, and extraction and intensity control elements that minimize the overall size of the synchrotron, provide a tightly controlled proton beam, directly reduce the size of required magnetic fields, directly reduces required operating power, and allows independent energy and intensity control of extracted charged particles from the synchrotron.