Abstract:
A throttle assembly for a pressure control system in a vehicle includes at least one throttle valve. The at least one throttle valve defines an assembly cross-section of the throttle assembly, the assembly cross-section specifies a flow resistance acting on a pressure medium entering the throttle assembly, and the at least one throttle valve includes at least one controllable throttle valve configured to be controlled in accordance with an upstream pressure. The assembly cross-section of the throttle assembly is configured to be set, by control of the at least one controllable throttle valve, in such a way that an inlet volume flow of the pressure medium entering the throttle assembly can be limited to a limit volume flow in accordance with the upstream pressure, in order to set, in accordance with the upstream pressure, a power consumption of a pneumatic load in the pressure control system.
Abstract:
A compressor for a compressed-air feed of a compressed-air supply installation, for operating a pneumatic installation, includes: a first compression space; a second compression space; an air feed port; a compressed-air outlet; and a piston having a first face side, which is subjectable to pressure and which is directed toward the first compression space, and a second face side, situated opposite the first face side, which is subjectable to pressure and which is directed toward the second compression space, the first compression space being delimited by the first face side and the second compression space being delimited by the second face side. The first face side includes a full side and the second face side includes a step side. The piston is attached via a connecting rod to a drive. The first compression space and the second compression space are connected to one another via a connecting line.
Abstract:
A compressor assembly for a compressed-air feed of a compressed-air supply system for operating a pneumatic system includes a compressor having a con-rod, a con-rod bearing, and a cylinder. The con-rod has a compressor piston. The compressor assembly further includes a drive having a drive shaft and a drive housing. The drive shaft is mounted in a drive bearing that is disposed within the drive housing. The drive bearing and the con-rod bearing partially or completely overlap one another in the axial direction, or the axial central plane of the drive bearing and the axial central plane of the con-rod bearing lie in one bearing plane. A crank disk is fixedly connected to an end portion of the drive shaft, the crank disk having a con-rod receptacle portion that is disposed so as to be eccentric to the drive shaft, the crank disk being rotatably connected to the con-rod.
Abstract:
A compressor for producing compressed air, in particular for a compressed air supply system of a vehicle, includes an electric motor in the form of a brushed direct current electric motor. The compressor has at least one first and one second compressor step, which can be driven by the electric motor. The motor can be controlled by means of an electronic control module of a control device by limiting an operational flow of the motor.
Abstract:
A compressed air supply unit for operating a pneumatic unit by means of a compressed air flow, in particular of an air suspension unit of a vehicle, comprises an air dryer arrangement in a main pneumatic line that pneumatically links a compressed air feed line from an air compressor and a compressed air connection to the pneumatic unit. A valve arrangement is pneumatically connected to the main pneumatic line for controlling the compressed air flow. The air dryer arrangement has a drying container having a container outer wall. A partition along a length of the drying container divides an internal space delimited by the container outer wall into first and second chambers delimited by the partition and the container outer wall. The partition adjoins the container outer wall along the length of the drying container, and the first and second chambers are adjacent to one another along that length.
Abstract:
A method for operating a pressure control system in a vehicle includes controlling a flow-control valve in a charging line, which conveys a charging pressure medium, in dependence upon an admission pressure and/or upon an admission volume flow. The admission pressure and/or the admission volume flow characterizes a prevailing or currently to be expected loading of a pneumatic consumer of the pressure control system during the supply of the charging pressure medium with a charging volume flow and at a charging pressure into the pneumatic consumer. The method further includes adjusting a flow-control cross-section, which acts on the charging pressure medium as it flows through the flow-control valve, or adjusting an average flow-control cross-section so as to limit the charging volume flow to a limit volume flow. The method additionally includes outputting the volume-flow limited charging pressure medium to the pneumatic consumer.
Abstract:
A compressed-air supply system for operating a pneumatic installation includes a reservoir, a number of bellows, a pressure-air feed to which a charging assembly having a compressor is connected on a pressure-medium feed side, a pressure-air connection to the pneumatic installation, a venting connection to the environment, a pneumatic main line between the pressure-air feed and the pressure-air connection, a vent line between the pressure-air feed and the venting connection and a changeover valve associated with the pressure-air feed and configured to be controlled by pressure air in such a way that the pressure-air feed is open or can be opened via the changeover valve to the main line. A flow pressure at the pressure-air feed can be generated by the charging assembly to the main line.
Abstract:
A compressed air supply installation for operation of an air spring installation of a vehicle includes an air feed with an air compressor configured to supply a compressed air feed with compressed air, a pneumatic main line with an air dryer and a compressed air connection for supplying the pneumatic installation with compressed air, a purge line branching from the pneumatic main line to the compressed air feed and comprising a purge valve connected in the purge line and a purge connection for releasing air to the environment, wherein the purge valve is part of a controllable valve assembly. The controllable valve assembly with the purge valve can be pneumatically loaded with a control pressure derived from the air compressor.
Abstract:
A vehicle air suspension system of includes at least one or more bellows assigned to an air spring of one or more vehicle axles. The bellows can be connected to a main pressure line and can be blocked off therefrom the latter via a connecting line having a level control valve. The main line can be supplied with air via a supply line having a compressor and an air dryer, and can be vented via a vent line, which branches off between the compressor and the air dryer and has a discharge valve. A pressure reservoir can be connected to the main line and can be blocked off therefrom via a connecting line having a storage valve. To set different flow velocities when supplying and venting the bellows the bellows of the air spring arranged on a vehicle axle or on a vehicle side is/are connected to the main line and blocked off therefrom via at least two parallel connecting lines, each having a level control valve.
Abstract:
A method for operating a pressure control system having a multistage compressor includes outputting, by the multistage compressor in order to fill a pressure medium store or pressure medium chambers of the pressure control system, a pressure medium compressed multiple times. Outputting the pressure medium compressed multiple times includes providing, by a first compression stage, a precompressed pressure medium and further compressing, by a second compression stage, the precompressed pressure medium to form a compressed pressure medium and then outputting the compressed pressure medium. Alternatively, outputting the pressure medium compressed multiple times includes providing a compression pressure medium, which is obtained from additional compression of an already compressed charge pressure medium from the pressure medium reservoir or the pressure medium chambers of the pressure control system, wherein the compression pressure medium is output without additional compression by the second compression stage.